Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The study investigates the efficacy of new features introduced to the selection process for medical school at the University of New South Wales, Australia: (1) considering the relative ranks rather than scores of the Undergraduate Medicine and Health Sciences Admission Test and Australian Tertiary Admission Rank; (2) structured interview focusing on interpersonal interaction and concerns should the applicants become students; and (3) embracing interviewers’ diverse perspectives.
Methods: Data from 5 cohorts of students were analyzed, comparing outcomes of the second year in the medicine program of 4 cohorts of the old selection process and 1 of the new process. The main analysis comprised multiple linear regression models for predicting academic, clinical, and professional outcomes, by section tools and demographic variables.
Results: Selection interview marks from the new interview (512 applicants, 2 interviewers each) were analyzed for inter-rater reliability, which identified a high level of agreement (kappa=0.639). No such analysis was possible for the old interview since it required interviewers to reach a consensus. Multivariate linear regression models utilizing outcomes for 5 cohorts (N=905) revealed that the new selection process was much more effective in predicting academic and clinical achievement in the program (R2=9.4%–17.8% vs. R2=1.5%–8.4%).
Conclusion: The results suggest that the medical student selection process can be significantly enhanced by employing a non-compensatory selection algorithm; and using a structured interview focusing on interpersonal interaction and concerns should the applicants become students; as well as embracing interviewers’ diverse perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435329 | PMC |
http://dx.doi.org/10.3352/jeehp.2022.19.31 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!