Saline soil is one of the major problems limiting rice productivity in the Northeastern area of Thailand. Thus, the aims of this study were to determine soil physicochemical analysis and soil enzyme activities, and bacterial communities in the rhizosphere of 'RD 6' rice grown in salt-affected rice fields. The Ban Thum sample showed the highest electrical conductivity (EC; greater than 6 dS m) and total Na, while the EC in other fields were at non- or slightly saline levels. The principal component analysis revealed that soil chemical characteristics and soil enzymes activities explained 73.4% of total variation. Soil enzyme activities including dehydrogenase and fluorescein diacetate (FDA) hydrolysis, and soil characteristics including organic matter (OM) and organic carbon (OC) were significantly negatively correlated to EC. This indicated that these soil properties were adversely impacted by salts. Interestingly, activities of all hydrolytic enzymes were not affected by soil salinity. Bacteria that were able to colonize the rhizosphere soils were Achromobacter cholinophagum, Rhizobium tarimense, and unculturable bacteria. In this regard, study on the relationship of soil chemical characteristics and soil enzyme activities together with bacterial communities provided promising data for assessing rice field soil quality in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701763PMC
http://dx.doi.org/10.1038/s41598-022-24902-2DOI Listing

Publication Analysis

Top Keywords

soil chemical
12
chemical characteristics
12
soil
12
soil enzyme
12
enzyme activities
12
activities bacterial
8
bacterial communities
8
characteristics soil
8
rice
5
activities
5

Similar Publications

Forest Soil pH and Dissolved Organic Matter Aromaticity Are Distinct Drivers for Soil Microbial Community and Carbon Metabolism Potential.

Microb Ecol

January 2025

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.

The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.

View Article and Find Full Text PDF

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Soil magnetic records in Quaternary red earth (QRE) deposits contain a valuable record of paleoclimate information, providing insights into controls on Earth's climate system in the past and potentially helping to predict its response to perturbations in the future. Here, analysis of the environmental magnetism and mineralogy of the Xuancheng QRE (Anhui Province, South China) shows that magnetic variation was strongly linked to production of authigenic ferrimagnetic minerals such as maghemite. Fine-grained maghemite formed during the weathering-related transformation of iron-bearing illite to vermiculite, generating aggregates of vermiculite or mixed-layer illite-vermiculite.

View Article and Find Full Text PDF

Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.

View Article and Find Full Text PDF

Insight into enhanced tetracycline photodegradation by hematite/biochar composites: Roles of charge transfer, biochar-derived dissolved organic matter and persistent free radicals.

Bioresour Technol

January 2025

National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. Electronic address:

The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The k of TC removal with Hem/BC-5 reached 0.103 min, 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!