Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces.

Sci Rep

Research Institute of Fundamental Technology for Next Generation, Kindai University, K.U.RING, 1 Umenobe, Higashi Hiroshima, Hiroshima, 739-2116, Japan.

Published: November 2022

Laser powder additive manufacturing (PBF-LB) is an additive manufacturing method capable of producing high-precision and fully dense parts. However, nondestructively quality assurance of no internal defects remains challenging. Mitigating internal defects requires elucidating their formation mechanism and improving the PBF-LB process conditions. Therefore, we developed an in-situ monitoring system that combines surface morphology measurement by fringe projection and thermal field measurement with a high-speed camera. On heterogeneous surfaces in a practical multi-track PBF-LB process, a roughness index of the built part surface altered cyclically, consistent with the change in the angle between laser scanning and atmospheric gas flow. The high-speed camera monitoring showed that the melt pool was asymmetrical and spindle-shaped and that spatter was emitted mainly from the built part side of the melt pool. Furthermore, it was found that the built-part surface morphology under the powder layer affected the stability of the melt pool. As a result, a graphical representation of the melt pool and spattering for heterogeneous surfaces was proposed. Although it is still difficult to theoretically estimate the process window in which no spattering and no internal defects, in-situ monitoring equipment will provide knowledge to elucidate spattering and internal defects formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701802PMC
http://dx.doi.org/10.1038/s41598-022-24828-9DOI Listing

Publication Analysis

Top Keywords

internal defects
16
melt pool
16
additive manufacturing
12
heterogeneous surfaces
12
laser powder
8
pbf-lb process
8
in-situ monitoring
8
surface morphology
8
high-speed camera
8
spattering internal
8

Similar Publications

Objective: This study evaluates the extent of perfusion abnormalities in pediatric traumatic head injury patients by using computed tomography perfusion (CTP) and compares the efficacy of voxel based and whole brain perfusion data clinically with functional outcome scales GOSE-P and MRS.

Methodology: In this Prospective study 100 eligible patients of age group 0-15 years were enrolled. Subjects were categorized into mild, moderate and severe traumatic brain injury using GCS.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a prevalent inflammatory neurodegenerative disease in young people, causing neurological abnormalities and impairment. To investigate a novel therapeutic agent for MS, we observed the impact of maresin 1 (MaR1) on disease progression in a well-known, relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) mouse model. Treatment with MaR1 accelerated inflammation resolution, reduced neurological impairment, and delayed disease development by reducing immune cell infiltration (CD4+IL-17+ and CD4+IFNγ+) into the central nervous system (CNS).

View Article and Find Full Text PDF

In 2017, Kidney Disease: Improving Global Outcomes (KDIGO) published a Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Since then, new lines of evidence have been published related to evaluating disordered mineral metabolism and bone quality and turnover, identifying and inhibiting vascular calcification, targeting vitamin D levels, and regulating parathyroid hormone. For an in-depth consideration of the new insights, in October 2023, KDIGO held a Controversies Conference on CKD-MBD: Progress and Knowledge Gaps Toward Personalizing Care.

View Article and Find Full Text PDF

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!