This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family: Geminiviridae, Genus: Begomovirus) by the whitefly vector Bemisia tabaci MEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701672 | PMC |
http://dx.doi.org/10.1038/s41598-022-24880-5 | DOI Listing |
In the realm of 3D measurement, photometric stereo excels in capturing high-frequency details but suffers from accumulated errors that lead to low-frequency distortions in the reconstructed surface. Conversely, light field (LF) reconstruction provides satisfactory low-frequency geometry but sacrifices spatial resolution, impacting high-frequency detail quality. To tackle these challenges, we propose a photometric stereoscopic light field measurement (PSLFM) scheme that harnesses the strengths of both methods.
View Article and Find Full Text PDFMed Vet Entomol
January 2025
Entomology Research Unit, Department of Zoology, The University of Burdwan, Burdwan, India.
Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae) transmits many pathogens, including seven viruses, four protozoa and one nematode. This species has a wide distribution range across northern Afro-tropical, Palearctic, Australian, Indo-Malayan realms with a broad host spectrum, including cattle, buffaloes, sheep, pigs, dogs, horses and even humans. The heterogeneous nature of Culicoides' blood-feeding patterns is well documented, but the influence of various host blood meal sources on gut bacterial composition remains scant.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY, United States.
Introduction: Powassan virus (POWV), a vector-borne pathogen transmitted by ticks in North America, is the causative agent of Powassan encephalitis. As obligate hematophagous organisms, ticks transmit pathogens like POWV at the tick bite site, specifically during the initial stages of feeding. Tick feeding and salivary factors modulate the host's immunological responses, facilitating blood feeding and pathogen transmission.
View Article and Find Full Text PDFMed Vet Entomol
January 2025
Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Dermacentor variabilis (Say) (Acari: Ixodidae) is a vector for pathogens that can impact human and animal health. The geographic range of this species is expanding, but there are some areas with limited up-to-date information on the distribution of D. variabilis.
View Article and Find Full Text PDFTomography
January 2025
Medical Physics Unit, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
Background: Computed tomography scans are widely used in everyday medical practice due to speed, image reliability, and detectability of a wide range of pathologies. Each scan exposes the patient to a radiation dose, and performing a fast estimation of the effective dose (E) is an important step for radiological safety. The aim of this work is to estimate E from patient and CT acquisition parameters in the absence of a dose-tracking software exploiting machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!