AI Article Synopsis

  • Regional land use changes significantly affect carbon storage in ecosystems, particularly in the source region of the Yellow River, highlighting the importance of predicting these impacts for sustainable development.
  • From 2000 to 2020, carbon storage in the area increased by 11.59 million tons, mainly due to the expansion of wetlands and shifts in grassland coverage.
  • Projections for 2040 indicate further carbon storage increases, with the natural change scenario showing a rise of 3.92 million tons and the ecological protection scenario yielding an even larger increase of 13.53 million tons, underscoring the need for informed land use management.

Article Abstract

Regional land use change is the main cause of carbon storage changes in ecosystems. Predicting the impact of future land use changes on carbon storage is of great significance for the sustainable development of carbon storage functions. In recent years, under the combined action of natural and human factors, the land use in the source region of the Yellow River has changed significantly, and its carbon storage function has also changed accordingly. This study combined InVEST and GeoSoS-FLUS models to evaluate land use change and its impact on carbon storage in the source region of the Yellow River from 2000 to 2020 and from 2020 to 2040 under different scenarios. The results showed that:① from 2000 to 2020, the carbon storage in the source region of the Yellow River showed an overall upward trend, with a total increase of 11.59×10 t. ② Over the past 20 years, the land use changes in the source region of the Yellow River included mainly the increase in the area of low-coverage grassland, construction land, and wetland and the decrease in the area of high-coverage grassland, medium-coverage grassland, and unused land, as well as the large-scale reduction of unused land and the reduction of grassland. The increase in the area of wetlands was the main reason for the increase in carbon storage. ③ Under the natural change scenario in 2040, the ecosystem carbon storage in the source region of the Yellow River was 871.34×10 t, an increase of 3.92×10 t compared with that in 2020. Under the ecological protection scenario, carbon storage increased significantly, with an increase of 13.53×10 t compared with that in 2020. The results of this study can provide a scientific reference for the decision-making of land use management and the sustainable development of carbon storage function in the source region of the Yellow River.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202201267DOI Listing

Publication Analysis

Top Keywords

carbon storage
44
source region
28
region yellow
28
yellow river
28
storage source
16
carbon
11
storage
11
land
9
invest geosos-flus
8
geosos-flus models
8

Similar Publications

Unlabelled: In recent years, sugar alcohols have gained significant attention as organic phase change materials (PCMs) for thermal energy storage due to their comparably high thermal storage densities up to 350 J/g. In a computational study, outstandingly high values of up to ~ 450-500 J/g have been postulated for specific higher-carbon sugar alcohols. These optimized structures feature an even number of carbon atoms in the backbone and a stereochemical configuration in which all hydroxyl groups are in an 1,3--relationship, as found in the natural hexitol d-mannitol.

View Article and Find Full Text PDF

Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.

View Article and Find Full Text PDF

Role of Mesoporosity in Hard Carbon Anodes for High-Energy and Stable Potassium-Ion Storage.

Small

January 2025

Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.

Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.

View Article and Find Full Text PDF

Microbiological datasets and associated environmental parameters from the French soil quality monitoring network (RMQS) offer an opportunity for long-term and large-scale soil quality monitoring. Soils supply important ecosystem services e.g.

View Article and Find Full Text PDF

Confining CoSe/MoSe2 Heterostructures in Interconnected Carbon Polyhedrons for Superior Potassium Storage.

ChemSusChem

January 2025

Jilin University, School of Materials Science and Engineering, Renmin street 5988, School of Materials Science and Engineering, Jilin University, 130022, Changchun, CHINA.

Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!