[Impact of Nitrification Inhibitors on Vegetable Production Yield, Nitrogen Fertilizer Use Efficiency and Nitrous Oxide Emission Reduction in China: Meta Analysis].

Huan Jing Ke Xue

Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.

Published: November 2022

Due to the long-term excessive fertilization in the vegetable system in China, nitrogen use efficiency (NUE) is low, and the environmental problem is serious. Nitrogen fertilizer combined with nitrification inhibitor is an effective strategy to alleviate the loss of active nitrogen and increase vegetable yield. However, systematic research on the above is lacking. Meta-analysis was used to systematically analyze the effects of nitrogen fertilizer combined with nitrification inhibitors[dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and 2-chloro-6-(trichloromethyl)pyridine (NP)] on the yield, plant nitrogen uptake, nitrogen fertilizer use efficiency, and nitrous oxide emission reduction effects in vegetable production in China. This study further revealed the impacts of different field management measures on their effects. The results showed that the combination of nitrogen fertilizer and nitrification inhibitor could significantly increase vegetable yield (9.2%), plant nitrogen uptake (10.4%), and nitrogen fertilizer use efficiency (11.2%) but reduce nitrous oxide emissions (28.4%). Among the different types of nitrification inhibitors, NP had the highest impact on the yield-increasing effect and the nitrous oxide emission reduction effect, which were 16.1% and 32.0%, respectively, followed by that of DMPP and DCD. Nitrification inhibitors could significantly increase vegetable yield (6.7%-14.7%) and reduce NO emissions (14.6%-36.8%) in different nitrogen fertilizer rates. In neutral and alkaline vegetable soil, the yield-increasing effect and the reduction effect of nitrous oxide were higher than those in acidic soil. Nitrification inhibitors had significant effects on yield increase and nitrous oxide reduction under the conditions of greenhouse or open-field cultivation, root vegetables, and leafy vegetables. Principal component analysis (PCA) showed that soil total nitrogen content and soil pH were the main factors that promoted the increase in vegetable yields and drove nitrous oxide emissions under the application of nitrification inhibitors. In summary, nitrification inhibitors were an important measure to achieve the goal of improving quality and fertilizer use efficiency, while saving fertilizer and reducing emissions in vegetable production. Farmers should choose suitable types of nitrification inhibitors according to soil and field management measures to maximize their effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202112046DOI Listing

Publication Analysis

Top Keywords

nitrification inhibitors
28
nitrogen fertilizer
28
nitrous oxide
28
fertilizer efficiency
16
increase vegetable
16
vegetable production
12
nitrogen
12
oxide emission
12
emission reduction
12
vegetable yield
12

Similar Publications

Agriculture accounts for a large proportion of global greenhouse gas (GHG) emissions. It is therefore crucial to identify effective and efficient GHG mitigation potentials in agriculture, but also in related upstream sectors. However, previous studies in this area have rarely undertaken a cross-sectoral assessment.

View Article and Find Full Text PDF

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

Structural characterization of pyruvic oxime dioxygenase, a key enzyme in heterotrophic nitrification.

J Bacteriol

January 2025

Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.

Nitrification by heterotrophic microorganisms is an important part of the nitrogen cycle in the environment. The enzyme responsible for the core function of heterotrophic nitrification is pyruvic oxime dioxygenase (POD). POD is a non-heme, Fe(II)-dependent enzyme that catalyzes the dioxygenation of pyruvic oxime to produce pyruvate and nitrite.

View Article and Find Full Text PDF

Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.

View Article and Find Full Text PDF

Nitrogen (N) transformation inhibitors have been widely recognized as a promising strategy to enhance crop productivity and mitigate N losses. However, the effectiveness of individual or combined inhibitors can vary significantly across different agroecosystems. Using meta-analysis and cost-benefit analysis (CBA), we synthesized findings from 41 peer-reviewed studies (285 observations) globally to evaluate the efficacy of urease inhibitors (UIs), nitrification inhibitors (NIs), and combined inhibitors (UINIs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!