[Difference in PM Pollution and Transport Characteristics Between Urban and Suburban Areas].

Huan Jing Ke Xue

Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.

Published: November 2022

Based on multi-source observation data, such as lidar ceilometer, aircraft AMDAR, and conventional sites, combined with numerical simulation (CAMx-PSAT), this study took the typical cities of the Beijing-Tianjin-Hebei region-Beijing (BJ) urban area and suburbs (Miyun) and Shijiazhuang (SJZ) urban area and suburbs (Pingshan) as the case study areas. The differences in boundary layer height between urban areas and suburbs (ΔPBLH), surface PM mass concentration (ΔSurf_PM), vertical PM mass concentration (ΔVert_PM), and transmission flux intensity and height distribution characteristics were analyzed. The results showed:due to factors such as anthropogenic heat sources, short-wave radiation, and thermal turbulence, the annual average planetary boundary layer height in urban areas was 8%-29% higher than that in the suburbs, and in different seasons, the monthly average planetary boundary layer height in urban areas was 2% (April in SJZ)-47% (July in BJ) higher than that in the suburbs. Due to the combined effects of anthropogenic emissions, inversions, and atmospheric turbulence, the annual average(PM) in urban areas between 0-1260 m was higher than that in suburbs by 0.1 (SJZ)-29.7 (BJ) μg·m and decreased with the increase in height. The annual average total net flux intensity in urban areas was much greater than that in suburbs, with outflows in urban areas and inflows in suburbs; due to the urban low pressure and the suburban high pressure, suburban thermal circulation was formed. The annual average total net flux intensity in BJ (44.77 t·d) was greater than that in SJZ (34.44 t·d). Affected by wind speed and PM mass concentration, between 0-1260 m, the fluxes in urban areas and suburbs and surrounding areas showed an obvious trend of increasing net flux intensity with the increase in height above the ground. Furthermore, the transmission exchange between urban areas and suburbs and surrounding areas in January and April had the most obvious impact on the environment. The intensity of the maximum net flux in the lower urban areas and the suburbs in different seasons was significantly different, and the difference between the two was 2.23-4.48 times; however, the height characteristic difference in the intensity of the maximum net flux was small, mainly located at 611-1260 m.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202201227DOI Listing

Publication Analysis

Top Keywords

urban areas
36
net flux
20
areas suburbs
16
flux intensity
16
urban
13
areas
12
boundary layer
12
layer height
12
height urban
12
mass concentration
12

Similar Publications

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted public transportation systems worldwide. In this study, we evaluated the rate of COVID-19 positivity and its associated factors among users of public transportation in socioeconomically disadvantaged regions of Brazil during the pre-vaccination phase of the pandemic.

Methodology: This ecological study, conducted in Aracaju city in Northeast Brazil, is a component of the TestAju Program.

View Article and Find Full Text PDF

Background: Family physician program is one of the effective reforms of the health system in Iran, but despite the implementation of this program in rural areas and the passage of ten years since its implementation in two provinces of Fars and Mazandaran, its implementation has faced problems. The aim of this study is to identify and prioritize implementation solutions related to the challenges of the family physician program in Iran.

Methods: This is a qualitative study using semi-structured interviews with 22 snowball-sampled experts and managers of basic health insurers to extract problems and executive solutions through coding and data analysis using Atlas Ti software and content analysis in the first stage.

View Article and Find Full Text PDF

This study addresses the significant issue of rapid land use and land cover (LULC) changes in Lahore District, which is critical for supporting ecological management and sustainable land-use planning. Understanding these changes is crucial for mitigating adverse environmental impacts and promoting sustainable development. The main goal is to evaluate historical LULC changes from 1994 to 2024 and forecast future trends for 2034 and 2044 utilizing the CA-Markov hybrid model combined with GIS methodologies.

View Article and Find Full Text PDF

Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).

View Article and Find Full Text PDF

Pollution profiles, pathogenicity, and toxicity of bioaerosols in the atmospheric environment of urban general hospital in China.

Environ Pollut

January 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Airborne microorganisms in hospitals present significant health risks to both patients and employees. However, their pollution profiles and associated hazards in different hospital areas remained largely unknown during the extensive use of masks and disinfectants. This study investigated the characteristics of bioaerosols in an urban general hospital during the COVID-19 pandemic and found that airborne bacteria and fungi concentrations range from 87±35 to 1037±275 CFU/m and 21±15 to 561±132 CFU/m, respectively, with the outpatient clinic and internal medicine ward showing the highest levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!