[Biodegradation of Polyethylene Microplastic: A Review].

Huan Jing Ke Xue

Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

Published: November 2022

Over the recent decades, global plastic production has grown dramatically due to the huge demands of consumption. As a consequence, large amounts of plastic waste have accumulated in the environment and will be cleaved into microplastics. Due to the low bioavailability, the microplastics will exist in the environment persistently and cause massive environmental stress. Plastic pollution is currently one of the biggest environmental concerns. Recent studies have shown the possibility to obtain degrading microorganisms of microplastics from the natural environment. Some microorganisms can break down microplastics into water and carbon dioxide. This paper reviewed the current research on biodegradation of polyethylene (PE), which is the most abundant microplastic type in the environment, and discussed the quantification methods of the degradation effect. Given that current biodegradation efficiency is relatively limited, further research is required.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202206017DOI Listing

Publication Analysis

Top Keywords

current biodegradation
8
[biodegradation polyethylene
4
polyethylene microplastic
4
microplastic review]
4
review] decades
4
decades global
4
global plastic
4
plastic production
4
production grown
4
grown dramatically
4

Similar Publications

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review.

Bone Res

January 2025

Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent.

View Article and Find Full Text PDF

Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation.

View Article and Find Full Text PDF

Introduction: The escalating resistance of microorganisms to antimicrobials poses a significant public health threat. Strategies that use biomarkers to guide antimicrobial therapy-most notably Procalcitonin (PCT) and C-reactive protein (CRP)-show promise in safely reducing patient antibiotic exposure. While CRP is less studied, it offers advantages such as lower cost and broader availability compared with PCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!