3D printing has become an important strategy for constructing graphene smart structures with arbitrary shapes and complexities. Compared with graphene oxide ink/gel/resin based manners, laser-induced graphene (LIG) is unique for facile and scalable assembly of 1D and 2D structures but still faces size and shape obstacles for constructing 3D macrostructures. In this work, a brand-new LIG based additive manufacturing (LIG-AM) protocol is developed to form bulk 3D graphene with freeform structures without introducing extra binders, templates, and catalysts. On the basis of selective laser sintering, LIG-AM creatively irradiates polyimide (PI) powder-bed for triggering both particle-sintering and graphene-converting processes layer-by-layer, which is unique for assembling varied types of graphene architectures including identical-section, variable-section, and graphene/PI hybrid structures. In addition to exploring combined graphitizing and fusing discipline, processing efficiency and assembling resolution of LIG-AM are also balanceable through synergistic control of lasing power and powder-feeding thickness. By further studying various process dependent properties, a LIG-AM enabled aircraft-wing section model is finally printed to comprehensively demonstrate its shiftable process, hybridizable structure, and multifunctional performance including force-sensing, anti-icing/deicing, and microwave shielding and absorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896062 | PMC |
http://dx.doi.org/10.1002/advs.202204990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!