A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decellularized liver extracellular matrix and thrombin loaded biodegradable TOCN/Chitosan nanocomposite for hemostasis and wound healing in rat liver hemorrhage model. | LitMetric

Decellularized liver extracellular matrix and thrombin loaded biodegradable TOCN/Chitosan nanocomposite for hemostasis and wound healing in rat liver hemorrhage model.

Int J Biol Macromol

Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea. Electronic address:

Published: January 2023

AI Article Synopsis

  • * The composite incorporates oxidized cellulose and chitosan, enhanced with thrombin for improved clotting efficiency, and promotes faster wound healing through its collagen and growth factor content.
  • * In experiments on rat models, the composite demonstrated significant efficacy by achieving faster hemostatic effects in tail amputation and liver avulsion compared to standard commercial products like SURGICEL.

Article Abstract

During deep noncompressible wound management, surgery, transplantation or post-surgical hemorrhage, rapid blood absorption and hemostasis are the key factors to be taken into consideration to reduce unexpected deaths from severe trauma. In this study, a novel hemostatic biodegradable nanocomposite was fabricated where decellularized liver extracellular matrix (L-ECM) was loaded with two natural polymers (oxidized cellulose and chitosan) in association with thrombin. Plant-derived oxidized cellulose nanofiber (TOCN) and Chitosan (CS) from deacylated chitin were self-assembled with each other by electrostatic interactions. ECM was prepared by the whole tissue decellularization process and incorporated into the composite as a source of collagen and other integrated growth factors to promote wound healing. Thrombin was also anchored with the polymers by freeze drying for enhanced hemostatic efficiency of the composite. This study is the first of its kind to report non-solubilized L-ECM and thrombin loaded TOCN and CS composite, CN/CS/EM-Th for faster hemostasis effect in a rat tail amputation (~71 s) and liver avulsion model (~41 s). Furthermore, excellent liver wound regeneration efficacy was observed in-vivo in comparison to the commercially available oxidized regenerated cellulose product SURGICEL gauge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.209DOI Listing

Publication Analysis

Top Keywords

decellularized liver
8
liver extracellular
8
extracellular matrix
8
thrombin loaded
8
wound healing
8
oxidized cellulose
8
thrombin
4
matrix thrombin
4
loaded biodegradable
4
biodegradable tocn/chitosan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!