Active microrheology of protein condensates using colloidal probe-AFM.

J Colloid Interface Sci

Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, the Netherlands. Electronic address:

Published: February 2023

Protein condensates resulting from liquid-liquid phase separation have long been studied as bio-adhesives and coating materials for various applications. More recently, they are also being scrutinized as models for membraneless organelles in cells. Quantifying their interfacial mechanics and rheology at micrometer scales is vital for better understanding the physics underlying membraneless organelles in cells and for developing and improving technological applications of protein condensates. This study demonstrates how colloidal probe atomic force microscopy with an oscillating tip can be used to simultaneously investigate the interfacial mechanics and dynamic rheological properties of micro-scale protein condensates, formed via carefully controlled capillary condensation. This new approach can access oscillation frequencies ranging from 1 to 10 rad/s. By analyzing the data using an equivalent mechanical model, three characteristic frequency domains for the mechanics of micro-scale protein condensates are found: an interfacial tension-dominated domain at low frequencies, a transition domain (viscous-to-elastic crossover) at intermediate frequencies, and an elasticity-dominated domain at high frequencies, covering a broad range of time scales relevant in biology and technological applications of protein condensates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.11.071DOI Listing

Publication Analysis

Top Keywords

protein condensates
24
membraneless organelles
8
organelles cells
8
interfacial mechanics
8
technological applications
8
applications protein
8
micro-scale protein
8
protein
6
condensates
6
active microrheology
4

Similar Publications

The dark side of fluorescent protein tagging - the impact of protein tags on biomolecular condensation.

Mol Biol Cell

January 2025

Department of Biology, Institute of Biochemistry, ETH (Eidgenössische Technische Hochschule) Zürich, 8093 Zürich, Switzerland.

Biomolecular condensation has emerged as an important mechanism to control various cellular processes through the formation of membraneless organelles. Fluorescent protein tags have been extensively used to study the formation and the properties of condensates and , but there is evidence that tags may perturb the condensation properties of proteins. In this study, we carefully assess the effects of protein tags on the yeast DEAD-box ATPase Dhh1, a central regulator of processing bodies (P-bodies), which are biomolecular condensates involved in mRNA metabolism.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).

View Article and Find Full Text PDF

Telomemore enables single-cell analysis of cell cycle and chromatin condensation.

Nucleic Acids Res

January 2025

Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Biomedicinbyggnaden 6K och 6L, Umeå universitetssjukhus, 901 87, Umeå, Sweden.

Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites.

View Article and Find Full Text PDF

Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.

View Article and Find Full Text PDF

Biomolecular condensates in immune cell fate.

Nat Rev Immunol

January 2025

Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.

Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!