Cervical carcinoma is the fourth most common gynecological cancer. Here we reported the synthesis of oxygen-carried and lipopolysaccharide (LPS)/ indocyanine green (ICG)-loaded nanoparticles (OLI_NPs) for photo-sonodynamic therapy (PSDT) mediated combination therapy to induce systemic antitumor immune responses. We effectively built a new nanoparticle system, a multifunctional nanoagent that integrated the ability of dual-model imaging and therapy for tumors. In this study, we confirmed that OLI_NPs can act as a multifunctional platform that enables not only to diagnose tumors conveniently but also to efficiently provide treatment of in situ tumors, permitting simultaneous dual-mode imaging and localization of the therapy in combination with PSDT-mediated drug release. Furthermore, our combined strategy could effectively depress the tumor development and extend mouse life by the combination of inducing immunogenic cell death (ICD) with encapsulated LPS. In conclusion, combining therapy of OLI_NPs plus PSDT can induce anti-tumor immune responses and tumor antigen-specific immunity in a common TC-1 graft tumor model. Therefore, this combination therapy is a viable technique for cervical cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2022.112583 | DOI Listing |
Acta Biomater
December 2024
Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, PR China. Electronic address:
Dynamic therapies such as photodynamic therapy (PDT) and sonodynamic therapy (SDT) have potential in cancer treatment. Microalgae have attracted increasing attention because of their high active mobility, flexibility in terms of functionality, and good biocompatibility. In this study, surface-engineered microalgae Chlorella vulgaris (Chl) modified with metal‒organic framework (MOF) nanoparticles (denoted Chl-MOF) are successfully developed for synergistic photo-sonodynamic therapy and immunotherapy.
View Article and Find Full Text PDFMolecules
October 2024
Research Center of Nano Technology and Application Engineering, Dongguan Innovation Institute, Guangdong Medical University, Dongguan 523808, China.
Dynamic tumor therapies (mainly including photodynamic therapy (PDT) and sonodynamic therapy (SDT)) offer new approaches to cancer treatment. They are often characterized by their noninvasive nature, high selectivity, and low toxicity. Sensitizers are crucial for dynamic therapy.
View Article and Find Full Text PDFFolia Microbiol (Praha)
October 2024
Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance.
View Article and Find Full Text PDFBiosci Trends
September 2024
Department of Anesthesiology, People's Hospital of Longhua, Shenzhen, Guangdong Province, China.
This study was conducted to investigate the value of Synechococcus 7942 (Syne) as a sensitizer for photo-sonodynamic therapy (PSDT). Syne was characterized. The efficacy of Syne-mediated PSDT were verified in vitro (in 4T1 breast cancer cells) and in vivo (in a breast tumor-bearing mouse model).
View Article and Find Full Text PDFInt J Nanomedicine
August 2024
Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China.
Introduction: Traditional cancer treatment strategies often have severe toxic side effects and poor therapeutic efficacy. To address the long-standing problems related to overcoming the complexity of tumors, we develop a novel nanozyme based on the in situ oxidation of 2D TiC structure to perform simultaneous phototherapy and sonodynamic therapy on tumors. TiC nanozymes exhibit multi-enzyme activity, including intrinsic peroxidase (POD) activities, which can react with HO in the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!