Monotropein attenuates doxorubicin-induced oxidative stress, inflammation, and arrhythmia via the AKT signal pathway.

Biochem Biophys Res Commun

Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, China. Electronic address:

Published: January 2023

As a glycoside iridoid, monotropein (MON) has a wide range of pharmacological properties, including anti-inflammatory, antioxidant, and anti-apoptotic effects. However, few studies have investigated MON's cardiovascular protective effects. Therefore, this study aimed to explore the role of MON in doxorubicin (DOX)-induced cardiotoxicity. To establish the myocardial toxicity model, mice were intraperitoneally injected with DOX. After admimistration of DOX, myocardial injury markers were increased, cardiac function was reduced, and pathological changes were observed in the myocardium, indicating successful construction of the myocardial injury model. Our study showed that MON treatment mitigated DOX-induced myocardial damage and improved cardiac dysfunction. In addition, DOX-treated mice displayed higher levels of inflammation and oxidative stress, while MON treatment also reversed these pathological changes. Moreover, DOX-treated mice were more susceptible to ventricular fibrillation, whereas MON reduced ventricular fibrillation incidence. Further studies have shown that MON could reverse DOX-induced inhibition of the AKT signaling pathway. Besides, the application of AKT inhibitor could partially abolish MON's cardioprotective effects. To conclude, this study demonstrated the ability of MON to reduce DOX-induced myocardial damage, cardiac dysfunction, inflammation, and oxidative stress, as well as ventricular fibrillation risk. These may attributable to the activation of the AKT pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.11.058DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
ventricular fibrillation
12
myocardial injury
8
pathological changes
8
mon treatment
8
dox-induced myocardial
8
myocardial damage
8
cardiac dysfunction
8
dox-treated mice
8
inflammation oxidative
8

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Enhancing metformin efficacy with cholecalciferol and taurine in diabetes therapy: Potential and limitations.

World J Diabetes

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.

View Article and Find Full Text PDF

Background: Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!