Radioactive contamination, especially the uranium pollution, is threatening the ecological environment. How to efficiently and quickly remove uranium from the environment is a problem to be solved. Herein, the dodecyl trimethyl ammonium bromide embellished titanium dioxide (DTAB/TiO) was prepared as an adsorbent to adsorb uranium (U) from water. The introduction of dodecyl trimethyl ammonium bromide can improve the adsorption capacity of titanium dioxide for U(VI). Besides, the excellent chemical stability of DTAB/TiO would not result in secondary pollution, which was the novelty of this work. The DTAB/TiO composite was composed of nanoparticles and presented a spherical morphology with a rough surface. The radius of DTAB/TiO was 0.45 μm, and the specific surface area reached 144.0 m/g. The removal of U(VI) on DTAB/TiO was a monolayer adsorption process, and the removal process was dependent on the solution pH. The capture of U(VI) improved with the temperature increase, indicating an endothermic process. The adsorption process can reach equilibrium within 240 min. Based on the Langmuir model, the adsorption capacity of DTAB/TiO for U(VI) reached 108.4 mg/g. The surface oxygen-containing functional groups, especially hydroxyl groups, played a crucial role in removing U(VI). This work can provide useful information for the cleanup of uranium and expand the application of surfactants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24090-6 | DOI Listing |
Life (Basel)
December 2024
Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
Atopic dermatitis (AD) or eczema is an important inflammatory chronic skin disease that brings many complications in its management and treatment. Although several chemical agents are used for treatment, the search for better anti-inflammatory and antibacterial agents of plant origin has been ongoing, since natural compounds, it is commonly believed, are less dangerous than synthetic ones. Therefore, the present study explored a medicinal plant- (L.
View Article and Find Full Text PDFWater Res
January 2025
Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan.
In the integrated circuit manufacturing process, reverse osmosis (RO) membranes are widely used for wastewater reclamation. However, fouling by typical surfactants significantly reduces membrane efficiency and lifespan. This study investigates the fouling mechanisms of typical surfactants-cetyl trimethyl ammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and polyoxyethylene octyl phenyl ether (TX, nonionic)-on RO membranes.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Environmental Science and Engineering, Qingdao University, Qingdao, China. Electronic address:
Microplastics (MPs) recycling, a promising approach to tackle its pollution, faces significant challenges due to the lack of effective separation methods. Herein, the optimized density separation accompanied with nonionic surfactants was employed to purify single MPs species from mixed systems. By adjusting the flotation fluid density, the single MPs can be separated from their mixtures in equal proportions (e.
View Article and Find Full Text PDFPeerJ
September 2024
Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China. Electronic address:
The molecular interaction of low-molecular-weight SPP with common surfactants (SDS and DTAB) is a more complicated process than has been long believed. In this work, the interaction mechanism between SDS/DTAB and SPP was proposed using multiple methods including conductivity measurements, ST, UV-vis, FT-IR, DLS, fluorescence spectroscopy, and molecular docking simulations. Moreover, the foaming properties of the mixed systems were studied, and they were evaluated as cosmetics preservatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!