Background: Omphalocele is a congenital abdominal wall defect of the umbilical cord insertion site. A giant omphalocele, with a fascial defect > 5 cm in diameter and/or containing > 50% of the liver within the hernia sac, can be challenging for pediatric surgeons. Recently, negative pressure wound therapy has been reported as an effective management for giant omphaloceles; however, it is not recommended for an infected wound with necrotic tissue as it may exacerbate infection. We adopted negative pressure wound therapy with irrigation and dwell time (NPWTi-d) for a case of a ruptured giant omphalocele. Artificial membranes, followed by artificial dermis, were used to promote fibrous capsule formation, and then NPWTi-d was used to promote granulation while controlling infection. However, studies have not been conducted regarding NPWTi-d for ruptured giant omphaloceles; hence, we present our treatment experience with NPWTi-d for a giant omphalocele.

Case Presentation: The patient was a boy born at 38 weeks and 3 days of gestation, weighing 1896 g. He was diagnosed with a ruptured giant omphalocele with a total liver and intestine defect hole of 10 cm × 10 cm. The patient underwent silo placement using an artificial mesh, followed by plicating the artificial mesh at 4 days of age. The herniated viscera were gradually reduced into the abdominal cavity; however, the defect size was still large. Hence, a collagen-based artificial dermis was patched on the defect hole. After creating a fresh and smooth granulated tissue, NPWTi-d was applied at 33 days of age to promote granulation and control infection. We used the 3 M™ V.A.C.® Ulta Therapy Unit with 3 M™ VeraFlo™ therapy. NPWTi-d was stopped at 60 days of age when the granulation tissue was well formed including at the artificial dermis site. The wound was managed with prostandin ointment and appropriate debridement, resulting in complete epithelialization at 5 months of age.

Conclusions: Artificial membranes followed by artificial dermis were used to promote a fibrous capsule and artificial dermis granulation, which protects against organ damage. NPWTi-d achieved better control of infection and promoted wound healing. NPWTi-d combined with artificial dermis can effectively treat ruptured giant omphaloceles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701383PMC
http://dx.doi.org/10.1186/s12887-022-03755-8DOI Listing

Publication Analysis

Top Keywords

artificial dermis
28
ruptured giant
20
giant omphalocele
16
negative pressure
12
pressure wound
12
wound therapy
12
giant omphaloceles
12
days age
12
artificial
11
therapy irrigation
8

Similar Publications

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Purpose: To describe a technique using retroauricular scalp graft for eyebrow reconstruction, along with problems encountered and countermeasures in treatment.

Methods: We present a patient with eyebrow loss following resection of a malignant schwannoma. We initially covered the defect from the upper eyelid to the eyebrow area with artificial dermis for hemostasis and to increase the granulation of the graft bed.

View Article and Find Full Text PDF

Self-organized patterning of crocodile head scales by compressive folding.

Nature

January 2025

Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.

Amniote integumentary appendages constitute a diverse group of micro-organs, including feathers, hair and scales. These structures typically develop as genetically controlled units, the spatial patterning of which emerges from a self-organized chemical Turing system with integrated mechanical feedback. The seemingly purely mechanical patterning of polygonal crocodile head scales provides an exception to this paradigm.

View Article and Find Full Text PDF

Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease characterized by keratinized epithelial tunnels that grow deeply into the dermis. Here, we examined the immune microenvironment within human HS lesions. Multi-omics profiling and multiplexed imaging identified tertiary lymphoid structures (TLSs) near HS tunnels.

View Article and Find Full Text PDF
Article Synopsis
  • This study evaluated the use of artificial dermal grafts for lower eyelids after removing basal cell carcinoma (BCC) to assess scar contracture.
  • Postoperative evaluations included four quantitative and two qualitative parameters, revealing no significant differences in measurements.
  • The results suggest that artificial dermal grafts can be effectively used without causing complications like eyelid retraction or ectropion.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!