Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor.

Int J Biol Macromol

State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province 266042, PR China. Electronic address:

Published: January 2023

To overcome the low energy density and poor conductivity of conventional electrode materials for building supercapacitor, herein, a hybrid hydrogel prepared from compositing bio-based chitosan with holey graphene oxide by microwave-assisted hydrothermal is proposed. This binary hydrogel is endowed with heteroatomic functional groups and conductive porous network by chemical pretreatments, where amides and carboxyl groups are introduced during the acylation modification of chitosan to enable it soluble in water for sufficient reaction, while the oxidation etching for graphene oxide in the defect area by HO facilitates in-plane nanopores network to provide abundant active surface and short ion diffusion pathway. Benefited from the high conductivity and flexibility, this hydrogel present promising performance when used as additive-free electrode in a three-electrode, with a high specific capacitance of 377 F/g at 5 A/g. The rich nitrogen and oxygen groups on surface of the hydrogel contribute to high capacitance directly, while the in-plane nanopores and hierarchically porous network benefit to promote their wettability, accelerate the charge transfer and enhance their charge storage ability. When the hydrogel composite is adopted into a flexible solid-state supercapacitor employing lignin hydrogel electrolyte, it unfolds a specific capacitance of 210 F/g at 0.5 A/g, with an ultrahigh energy density of 31 Wh/kg at the power density of 150 W/kg. The solid-state supercapacitor exhibits promising potential in applications such as signal sensor and portable energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.201DOI Listing

Publication Analysis

Top Keywords

porous network
12
energy density
12
hybrid hydrogel
8
ultrahigh energy
8
graphene oxide
8
in-plane nanopores
8
specific capacitance
8
solid-state supercapacitor
8
hydrogel
7
chitosan/graphene oxide
4

Similar Publications

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Glutaric anhydride esterification promotes wheat starch/glutein composite gel interaction: Formation, characterization, and oleogel applications.

Food Res Int

February 2025

Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China. Electronic address:

This study constructed a composite system with different ratios (100:0, 95:5, 90:10, and 80:20) of glutein compounded with various esterified starch (3 % and 6 %). The results demonstrated that the esterification process enhanced the viscosity of the starch gel system. Furthermore, the optimal esterification level (3 %) facilitated the formation of a dense composite gel network, as observed through microstructure observation.

View Article and Find Full Text PDF

Hydrogel dressings with good biocompatibility and extracellular matrix mimetic structure are important for the treatment of skin wounds. In this study, antimicrobial silver nanoparticles (Ag NPs) loaded with konjac glucomannan and silk fibroin (KGM/SF) composite hydrogel were used as a dressing for wound healing. The uniform distribution of Ag NPs on the surface of the hydrogels imparts excellent antibacterial properties to KGM/SF composite hydrogels.

View Article and Find Full Text PDF

Ultrasensitive electrochemical detection of gallic acid in beverages based on nitrogen-doped multi-walled carbon nanotube networks embellished with cobalt 2-methylimidazole nanoparticles.

Food Chem

January 2025

Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!