Biosynthesis of versatile PHA copolymers by thermophilic members of the genus Aneurinibacillus.

Int J Biol Macromol

Department of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic. Electronic address:

Published: January 2023

Thermophilic members of the genus Aneurinibacillus constitute a remarkable group of microorganisms that exhibit extraordinary flexibility in terms of polyhydroxyalkanoates (PHA) synthesis. In this study, we demonstrate that these Gram-positive bacteria are capable of the utilization of selected lactones, namely, γ-valerolactone (GVL), γ-hexalactone (GHL), and δ-valerolactone (DVL) as the structural precursors of related PHA monomers. In the presence of GVL, a PHA copolymer consisting of 3-hydroxybutyrate, 3-hydroxyvalerate, and also 4-hydroxyvalerate was synthesized, with a 4 HV fraction as high as 53.1 mol%. Similarly, the application of GHL resulted in the synthesis of PHA copolymer containing 4-hydroxyhexanaote (4HHx) (4HHx fraction reached up to 11.5 mol%) and DVL was incorporated into PHA in form of 5-hydroxyvalerate (5 HV) (maximal 5 HV content was 44.2 mol%). The produced materials were characterized by thermoanalytical and spectroscopic methods; the results confirmed extremely appealing material properties of produced copolymers. Further, due to their unique metabolic features and capability of incorporating various PHA monomers into the PHA chain, thermophilic Aneurinibacillus spp. can be considered not only promising chassis for PHA production but also potential donors of PHA-relevant genes to improve PHA production in other thermophiles by using approaches of synthetic biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.215DOI Listing

Publication Analysis

Top Keywords

pha
10
thermophilic members
8
members genus
8
genus aneurinibacillus
8
pha monomers
8
pha copolymer
8
pha production
8
biosynthesis versatile
4
versatile pha
4
pha copolymers
4

Similar Publications

Functional characterization of eQTLs and asthma risk loci with scATAC-seq across immune cell types and contexts.

Am J Hum Genet

January 2025

Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA. Electronic address:

cis-regulatory elements (CREs) control gene transcription dynamics across cell types and in response to the environment. In asthma, multiple immune cell types play an important role in the inflammatory process. Genetic variants in CREs can also affect gene expression response dynamics and contribute to asthma risk.

View Article and Find Full Text PDF

The aim was to estimate the prevalence of low muscle mass (LMM) and low muscle mass associated with obesity (LMM-O) in healthy adult, and to verify the performance of raw bioelectrical impedance parameters (BIA) and vector analysis (BIVA) in the screening of this tow conditions. This is a cross-sectional study including 1025 healthy adults. Body composition was assessed by the BIA technique.

View Article and Find Full Text PDF

Background And Aims: Body composition parameters associated with aerobic fitness, mirrored by maximal oxygen consumption (V̇Omax), have recently gained interest as indicators of physical efficiency in facioscapulohumeral dystrophy (FSHD). Bioimpedance analysis (BIA) allows a noninvasive and repeatable estimate of body composition but is based on the use of predictive equations which, if used in cohorts with different characteristics from those for which the equation was originally formulated, could give biased results. Instead, the phase angle (PhA), a BIA raw bioelectrical parameter reflecting body fluids distribution, could provide reliable data for such analysis.

View Article and Find Full Text PDF

Pericytes are essential for capillary stability and homeostasis, with impaired pericyte function linked to diseases like pulmonary arterial hypertension. Investigating pericyte biology has been challenging due to the lack of specific markers, making it difficult to distinguish pericytes from other stromal cells. Using bioinformatic analysis and RNAscope, we identified Higd1b as a unique gene marker for pericytes and subsequently generated a knock-in mouse line, Higd1b-CreERT2, that accurately labels pericytes in the lung and heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!