Using cheap and green lignin as a partial substitute for petroleum-based polyols is highly attractive for sustainable development of polyurethane elastomers (LPUes). However, the traditional synthesis process of LPUes inevitably uses toxic solvents that are difficult to remove or carcinogenic. Here, we reported a solvent-free synthesis method to prepare lignin-containing polyurethane elastomers (SF-LPUes) with high strength, high toughness and high elasticity. Most of the hydroxyl groups of lignin reacted with isocyanates to form a strong chemical cross-linking network, while the unreacted ones formed a dynamic hydrogen bond network with polyurethane matrix, contributing to the in-situ formation of lignin nanoparticles to build a nano-micro phase separation structure. Consequently, a dual-crosslinking network structure was formed and endowed SF-LPUes with excellent mechanical properties. Especially, the SF-LPUes prepared from low molecular alkali lignin possessed a tensile strength as high as 38.2 MPa, a maximum elongation at break of 1108 %, and an elastic recovery ratio of up to 98.7 %. Moreover, SF-LPUes showed impressing reprocessing performance and aging resistance. This work provides an industrial application prospect for the synthesis of lignin-containing polyurethane elastomers via a solvent-free synthesis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.207 | DOI Listing |
Curr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
A new one-pot approach was developed for the construction of pyrano[3,2-]chromene-2,5-diones by reacting 4-hydroxycoumarins with ethyl 3-oxo-3-phenylpropanoates in the presence of ammonium salts or aminocrotonates under solvent-free conditions. The title compounds were formed by intramolecular cyclization through new C-C and C-O bonds. Structure assignment of compound 3e was confirmed by single crystal X-ray analysis.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Laboratorio de Química Sintética Sostenible (QuimSinSos), Departamento de Química Orgánica e Inorgánica, (IUQOEM) and ORFEO-CINQA, Facultad de Química, Universidad de Oviedo, E33071 Oviedo, Spain.
The straightforward organocatalytic insertion of carbon disulfide (CS) into epoxides using either choline chloride () or tetrabutylammonium chloride (TBACl) is reported, for the first time, under solvent-free (neat) conditions. Fine-tuning of our system allowed us to obtain either dithiocarbonates (DTCs) or trithiocarbonates (TTCs) with high efficiency. Additionally, a mechanistic proposal is presented, supported by experimental evidence, DFT calculations and wavefunction analyses.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Chemistry, University of Guilan, P. O. Box: 41335-1914, Rasht, Iran.
The catalytic efficiency of sulfonated polystyrene foam waste (SPS) and sulfonated gamma alumina (SGA) in Friedel-Crafts type reactions was compared. All of the materials were studied using the state-of-the-art characterization techniques. SPS was found to carry a higher load of -SOH functional groups (1.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, Utkal University, Bhubaneswar 751004, India.
Organic transformations are very important in synthetic organic chemistry and are used immensely in pharmaceuticals. Polyaniline is a marvelous and exceptional conducting polymer because of its extensive and valuable applications. Various modified polyaniline derivatives were developed by researchers and explored as solid heterogeneous catalysts for synthesizing important organic compounds through different organic transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!