Ambient air quality is affected due to the emission of pollutants on a large scale after the bursting of firecrackers. Traditionally in all firecrackers, barium (Ba) compounds are used as oxidizers and also to impart green colour flame. Combustion products of barium compounds are water soluble and readily absorbed by the body affecting human health. Thus, the inherent risk of Ba pollution due to the bursting of firecrackers has consequent health effects. To reduce the ambient air pollution caused due to burning of conventional firecrackers, CSIR NEERI has developed reduced emission firecrackers (green crackers). This is achieved by reducing the amount of chemicals, barium nitrate, shell size and addition of additives such as zeolite and iron oxide. This study aims to specifically investigate the influence of additives on the level of barium in reduced emission firecrackers. Four types of conventional and reduced emission firecrackers were selected and tested inside a firecracker emission testing facility to check the levels of barium in PM and PM. The measured mean concentrations of all types of reduced emission crackers (green crackers) provided by fireworks manufacturers show significantly reduced barium concentration by 30-60% compared to conventional crackers depending on the type of firecrackers, shell size and amount of chemicals used. The possible reason for reduced Ba level is attributed to i) reduced usage of Ba(NO) and ii) formation of heavy density compounds, leading to soil fallout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120739 | DOI Listing |
Sci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFSci Rep
December 2024
Kombolcha Institute of Technology, Wollo University, Dessie, Ethiopia.
Alcohol-based fuels have shown high compatibility with spark-ignition (SI) engines, which require improvements in fuel efficiency and emissions reduction to meet modern environmental standards. While extensive research has been conducted on ethanol and other lower-order alcohols, there has been comparatively limited investigation into higher-order alcohols like butanol and pentanol as fuel alternatives. Previous studies on pentanol-gasoline blends in SI engines have demonstrated improved engine performance and reduced emissions.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Education, Shinawatra University, Bangkok, Thailand.
This study aims to reduce engine emissions while maintaining engine performance and providing a sustainable fuel source for long-term use. It introduces a novel approach by combining pine oil (PO) and lemon grass oil (LGO) with diesel fuel in a specific ratio (10% PO + 10% LGO + 80% Diesel). This work is innovative in that it employs these two distinct low-viscosity biofuel blends in conjunction with diesel fuel in an agricultural engine, resulting in reduced carbon footprints in the tailpipe.
View Article and Find Full Text PDFSci Rep
December 2024
Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.
View Article and Find Full Text PDFSci Rep
December 2024
Civil Engineering Department, Shoolini University, Solan, Himachal Pradesh, 173229, India.
Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!