Particulate Matter (PM) concentrations near highways are influenced by vehicle tailpipe and non-tailpipe emissions, other emission sources, and urban background aerosols. This study collected PM and PM filter samples near two southern California highways (I-5 and I-710) over two weeks in winter 2020. Samples were analyzed for chemical source markers. Mean PM and PM concentrations were approximately 10-15 and 30 μg/m, respectively. Organic matter, mineral dust, and elemental carbon (EC) were the most abundant PM components. EC and polycyclic aromatic hydrocarbons at I-710 were 19-26% and 47% higher than those at the I-5 sites, respectively, likely due to a larger proportion of diesel vehicles. High correlations were found for elements with common sources, such as markers for brake wear (e.g., Fe, Ba, Cu, and Zr) and road dust (e.g., Al, Si, Ca, and Mn). Based on rubber abundances, the contributions of tire tread particles to PM and PM mass were approximately 8.0% at I-5 and 5.5% at I-710. Two different tire brands showed significantly different Si, Zn, carbon, and natural rubber abundances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.120691DOI Listing

Publication Analysis

Top Keywords

southern california
8
california highways
8
rubber abundances
8
evidence non-tailpipe
4
non-tailpipe emission
4
emission contributions
4
contributions southern
4
highways particulate
4
particulate matter
4
matter concentrations
4

Similar Publications

Background: Globally, over one-third of pulmonary tuberculosis (TB) disease diagnoses are made based on clinical criteria after a negative bacteriological test result. There is limited information on the factors that determine clinicians' decisions to initiate TB treatment when initial bacteriological test results are negative.

Methods And Findings: We performed a systematic review and individual patient data meta-analysis using studies conducted between January 2010 and December 2022 (PROSPERO: CRD42022287613).

View Article and Find Full Text PDF

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor.

J Am Chem Soc

January 2025

Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.

The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP).

View Article and Find Full Text PDF

Importance: Persisting or new thrombi in the distal arteries and the microcirculation have been reported to limit the benefits of successful endovascular thrombectomy for patients with acute ischemic stroke. It remains uncertain whether intra-arterial thrombolysis by urokinase following near-complete to complete reperfusion by thrombectomy improves outcomes among patients with ischemic stroke due to large vessel occlusion.

Objective: To assess the efficacy and adverse events of intra-arterial urokinase after near-complete to complete reperfusion by thrombectomy for acute ischemic stroke due to large vessel occlusion.

View Article and Find Full Text PDF

Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.

Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!