Aims: Our previous study showed that oscillatory shear stress (OSS) induces endothelial progenitor cells (EPCs) to undergo endothelial to mesenchymal transition (EndoMT), which may contribute to the onset and progression of atherosclerosis (AS). However, the underlying mechanisms have not been elucidated. A recent study showed that exosomes (Exos) released from EPCs played a key role in various cardiovascular diseases. The purpose of this study was to identify the role and mechanism of Exos released by EPCs exposed to OSS in EPC EndoMT.

Main Methods: EPCs derived from the human umbilical cord blood were cultured and characterized. The Flexcell flow STR-4000 parallel plate flow chamber system was employed to apply OSS (±3.5 dyne/cm, 1 Hz) to EPCs for 12 h. Then, Exos were extracted from the cellular supernatant (Static-Exos) or perfusate (OSS-Exos) by exoEasy Maxi Kit. Afterward, cellular intervention, angiogenesis assays, high-throughput sequencing and online database predictions were used to identify the role and mechanism of OSS-Exos in EPC EndoMT.

Key Findings: OSS-Exos inhibited angiogenesis, promoted the proliferation of EPCs both in vivo and in vitro, and induced EPC EndoMT. In addition, the expression of circ-1199 in OSS-Exos was higher than that in Static-Exos. Moreover, circ-1199 induced EPC EndoMT. The dual-luciferase reporter gene assay showed that let-7g-5p was the direct target of circ-1199. Furthermore, OSS-Exos upregulated the expression of circ-1199 and then downregulated let-7g-5p, upregulating HMGA2, which activated p-Smad3/Smad3 and Snail.

Significance: OSS-Exos played an important role in the EndoMT of EPCs, which was mediated by the circ-1199/let-7g-5p/HMGA2 signaling pathway. These studies would have a high probability of revealing the mechanism of EPC EndoMT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.121223DOI Listing

Publication Analysis

Top Keywords

epc endomt
12
epcs
9
epcs exposed
8
shear stress
8
exos released
8
released epcs
8
identify role
8
role mechanism
8
induced epc
8
expression circ-1199
8

Similar Publications

Aims: Our previous study showed that oscillatory shear stress (OSS) induces endothelial progenitor cells (EPCs) to undergo endothelial to mesenchymal transition (EndoMT), which may contribute to the onset and progression of atherosclerosis (AS). However, the underlying mechanisms have not been elucidated. A recent study showed that exosomes (Exos) released from EPCs played a key role in various cardiovascular diseases.

View Article and Find Full Text PDF

Orthotopic allograft transplantation (OAT) is a major strategy for solid heart and kidney failure. However, the recipient's immunity-induced chronic rejection induces OAT vasculopathy that results in donor organ failure. With the exception of immunosuppressive agents, there are currently no specific means to inhibit the occurrence of OAT vasculopathy.

View Article and Find Full Text PDF

It was shown that endothelial progenitor cells (EPCs) have bidirectional differentiation potential and thus perform different biological functions. The purpose of this study was to investigate the effects of slight up-regulation of the Kir2.1 channel on EPC transdifferentiation and the potential mechanism on cell function and transformed cell type.

View Article and Find Full Text PDF

Renal ischemia induces peritubular capillary rarefication and fibrosis, with the latter partly resulting from the endothelial-to-mesenchymal transition (EndoMT). Endothelial cilia transmit blood flow-associated forces into the cell. Early endothelial progenitor cells (eEPCs) have been shown to protect mice from acute kidney injury in the short term.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!