Green synthesis of nanostructures from rice straw food waste to improve the antimicrobial efficiency: New insight.

Int J Food Microbiol

Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh-273015. Electronic address:

Published: February 2023

Applications for nanotechnology, which is constantly gaining prominence, have been found in a variety of industrial applications. Due to the multiple benefits associated with it, including an eco-friendly, pollution-free, cost-effective, and non-toxic synthesis method, the green way to synthesize nanostructures utilizing waste biomasses has become one of the key focuses of the current researches globally. Additionally, lignocellulasic biomass (LCB), which is a waste of the food crops, can be used as one of the potential substrates for the synthesis of a variety of nanostructures. Among different types of LCB, rice straw is a potential food waste biomass and can be efficiently employed during the synthesis of different types of nanostructures for a range of technological applications. Here, diverse phenolic compounds found in rice straw as well as reducing sugars can be used as natural reducing and capping agents to prepare a range of nanostructures. Based on the aforementioned facts, the objective of this review is to investigate the viability of using rice straw to produce nanostructured materials using rice straw as a renewable biosource following an environmentally friendly method. Additionally, it is noted that various organic compounds present on the surface of nanostructures produced using rice straw extract/hydrolyzate through a green approach may be more successful in terms of antibacterial efficacy, which might be of considerable interest for a variety of biomedical applications. Based on the possibility of enhancing the antimicrobial activity of developed nanostructures, the review also provides overview on the feasibility, characteristics, and availability of using rice straw extract in the synthesis of nanostructures. Additionally, the constraints of the present and potential futures of the green synthesis methods using rice straw wastes have been explored.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2022.110016DOI Listing

Publication Analysis

Top Keywords

rice straw
32
green synthesis
8
nanostructures
8
synthesis nanostructures
8
rice
8
straw
8
food waste
8
synthesis
5
green
4
nanostructures rice
4

Similar Publications

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

This study explores the potential of using underutilized materials from agricultural and forestry systems, such as rice husk, wheat straw, and wood strands, in developing corrugated core sandwich panels as a structural building material. By leveraging the unique properties of these biobased materials within a corrugated geometry, the research presents a novel approach to enhancing the structural performance of such underutilized biobased materials. These biobased materials were used in different lengths to consider the manufacturing feasibility of corrugated panels and the effect of fiber length on their structural performance.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).

View Article and Find Full Text PDF

Analyze the impact of lignin depolymerization process and its products on humic substance formation.

Int J Biol Macromol

January 2025

College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China. Electronic address:

This study aimed to identify types of lignin depolymerization products (LDP) and their role in humic substances (HS) formation, and little research has revealed which LDP could participate into HS formation during composting. Therefore, rice straw (RS), peanut straw (PS) and pine needles (PN) were selected for their different lignin structures to qualitatively and quantitative analyze LDP firstly. Qualitative results indicated that RS, PS and PN mainly produced LDP with G-type, common group and dimer structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!