AI Article Synopsis

  • The study investigated how Decabromodiphenyl ether (BDE-209), a common flame retardant, accumulates in the tissues of broiler chickens, which may impact human health through consumption.
  • Blood and tissue samples were analyzed after administering BDE-209 to male broilers, revealing peak concentrations at 24 hours and slow elimination occurring over four weeks.
  • Results showed that BDE-209 accumulated more in the liver and fat than in muscle tissues, highlighting concerns about the safety of chicken products and their potential toxicity.

Article Abstract

Decabromodiphenyl ether (BDE-209), the primary constituent of a widely used flame retardant formulation, is often present in high levels in avian derived products and could be transferred to humans through consumption. The purpose of this study was to investigate the toxicokinetics and bioaccumulation patterns of BDE-209 in different tissues of broilers, which would benefit the evaluation of chicken product safety. Male broilers received a single oral administration of BDE-209 at 25 mg/kg.BW and then BDE-209 concentrations in the plasma, liver, leg muscle, breast muscle, and other tissues were measured using gas chromatography-electron capture detection (GC-ECD). The changes of BDE-209 concentrations in the plasma were fitted to a non-compartmental model for kinetic analysis. Peak values were observed at 24 h (t =168.28 h), and trace levels remained for four weeks. Additionally, C in the liver was much higher than that in leg and breast muscles, and T from the liver and muscle were 12 and 24 h, respectively. Residual BDE-209 was detected in all broiler tissues after 2 weeks, and concentrations were ranked as follows: fat > liver > thymus gland > heart > testis > thigh muscle > skin > lung > kidney > breast muscles > spleen (wet weight (ww)). Our results suggested that BDE-209 was widely distributed in different tissues after intestinal absorption, and preferentially accumulated in adipose and liver tissues. Observations of bioaccumulation and slow elimination in the liver and muscles provide critical insight into the toxicity of BDE-209 and risk assessment of edible tissues from broilers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.114324DOI Listing

Publication Analysis

Top Keywords

bde-209
9
tissues broilers
8
bde-209 concentrations
8
concentrations plasma
8
tissues
6
liver
5
toxicokinetics edible
4
edible tissues-specific
4
tissues-specific bioaccumulation
4
bioaccumulation decabrominated
4

Similar Publications

Melatonin attenuates BDE-209-caused spatial memory deficits in juvenile rats through NMDAR-CaMKⅡγ-mediated synapse-to-nucleus signaling.

Food Chem Toxicol

January 2025

Department of Occupational and Environmental Health, School of Public Health, Jinzhou Medical University, Jinzhou, Liaoning, PR China. Electronic address:

Flame retardant polybrominated diphenyl ethers (PBDEs) accumulate in human bodies through food and dust ingestion, and cause neurobehavioral deficits with obscure mechanism. We aimed to investigate NMDAR-CaMKⅡγ-mediated synapse-to-nuclear communication involved in BDE-209-induced cognitive impairment, and alleviation from exogenous melatonin. Decreased NMDAR subunits GluN2A and 2B, autophosphorylation of CaMKⅡα, and postsynaptic GluA1 trafficking were observed in the hippocampus of juvenile rats after maternal BDE-209 exposure.

View Article and Find Full Text PDF

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF
Article Synopsis
  • PBDEs are synthetic compounds used as flame retardants, raising health concerns due to their toxicity and accumulation in the environment, with food and dust as main exposure sources.
  • The study analyzed dust from 31 cars and 14 airplanes for specific PBDE types, estimating exposure for infants, toddlers, and adults, using gas chromatography for detection.
  • Results showed BDE-209 was most prevalent, but overall exposure levels were low, with all hazard quotients below 1, indicating no significant health risk from dust ingestion for the populations studied.
View Article and Find Full Text PDF

The objective of this study was to analyze the concentrations of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in infant food (infant formulas and human milk) collected in Serbia and to assess their exposure and associated health risks. A total of 101 PCB congeners and 26 PBDE congeners were analyzed. In infant formulas (IF), the total PCB levels averaged 63.

View Article and Find Full Text PDF

Protective effect of trehalose on sperm chromatin condensation failure and semen quality decline in BDE-209-exposed mice.

Food Chem Toxicol

December 2024

Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China. Electronic address:

Article Synopsis
  • BDE-209 exposure leads to male reproductive toxicity characterized by a decline in sperm quality, but the impact of autophagy in this process was not well understood.
  • The study evaluated the protective effects of trehalose (Tre), an autophagy inducer, on reproductive damage during sperm development (spermiogenesis) caused by BDE-209 using a mouse model.
  • Results showed that Tre improved various sperm qualities and reduced testicular damage, likely by restoring normal autophagy pathways via AMPK-ULK1 signaling, highlighting potential therapeutic targets for addressing male reproductive toxicity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!