The conventional treatment strategy for glioblastoma multiforme (GBM) is surgical resection followed by radiotherapy and chemotherapy. Oncolytic adenovirotherapy is a promising alternative to conventional treatment. It provides a strategic combination of direct tumor-specific cell lysis and antitumor immune promotion. Despite advances in oncolytic adenovirotherapy, limitations remain, including the host's antiviral immune response and insufficient viral infiltration into the tumor. Mesenchymal stem cells (MSCs) have emerged as innovative vehicles due to their ability to home to tumors and protect oncolytic adenovirus (oAd) from the host antiviral immune system. We developed an Ad5-Ki67/IL-15 driven by the Ki67 promoter and armed with IL-15. Using this construction, viral replication is related to Ki67 expression in GBM cells. Thus, MSCs with background Ki67 expression can help deliver higher levels of oncolytic viruses and can strike a balance between viral load and cell viability. Using in vitro assay, MSCs loaded with Ad5-Ki67/IL-15 (MSC-Ad5) were shown to exert anti-glioblastoma efficacy. Compared to previous attempts at direct intratumoral injection of high doses of viruses, MSCs loaded with lower doses of viruses exerted stronger therapeutic effects and promoted macrophage/microglia infiltration in a Vivo model. Collectively, our results suggest that the use of MSCs as vehicles of oAd is a promising strategy and deserves further investigation for the treatment of GBM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2022.114035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!