In recent years, the threat to human health from bacteria in wastewater has attracted attention, and photocatalytic technology has emerged as a promising strategy for inactivating bacteria in water. Therefore, it is of great research value to develop a novel high-efficiency photocatalytic system with the visible light response. We successfully designed a double S-scheme heterojunction composite WO/g-CN/BiOI (WCB) in this paper. The preparation of WCB composites was demonstrated by a series of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The antibacterial effects of photocatalysts against representative Gram-negative strain Escherichia coli (E. coli) and Gram-positive strain Staphylococcus aureus (S. aureus) were tested under LED light irradiation. The novel photocatalyst presented excellent antibacterial properties, inactivating E. coli in 12 min and S. aureus in 20 min. The bacterial cell inactivation process was studied by scanning electron microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Active species capture experiments show that the active species present in the WCB composites in the process of inactivating bacteria are h, e, OH and O. In conclusion, the synthesized double S-scheme WCB photocatalyst exhibits remarkable photocatalytic antibacterial activity under LED light and has broad prospects for practical application in water antibacterial treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.11.058DOI Listing

Publication Analysis

Top Keywords

double s-scheme
12
antibacterial activity
8
inactivating bacteria
8
wcb composites
8
electron microscopy
8
led light
8
active species
8
antibacterial
5
construction novel
4
novel double
4

Similar Publications

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Highly efficient photocatalysts for degrading persistent antibiotics and synthetic dye pollutants under visible light are crucial for sustainable environmental remediation. In this study, we engineered a novel BiMoO (BMO)/NiAl-LDH (layered double hydroxide) hybrid catalyst with a unique 2D/2D heterostructure, optimized for the visible-light-driven elimination of ciprofloxacin (CPF) and hazardous synthetic dyes such as rhodamine B and methylene blue. The optimized BMO-30/LDH hybrid demonstrated exceptional photocatalytic performance, achieving nearly complete degradation of CPF and synthetic dyes with high mineralization efficiency, surpassing many previously reported state-of-the-art photocatalysts.

View Article and Find Full Text PDF

Reconfiguration of in situ heterojunction composites without interfacial resistance by substitution of homologous anions for the formation of gradient work function differences inducing the formation of built-in electric field is an effective strategy to enhance the charge separation efficiency. Herein, Te/ZnInS-V (Te/ZIS-V) in situ heterojunction was synthesized by substitution of Te ions for S in ultrathin ZIS containing S vacancies, which can significantly promote photogenerated charge separation, surface electron enrichment, and CO adsorption/activation. The presence of S vacancies and adjacent Te/S double anions, the double active sites constructed by defect engineering promote the desorption of *CO molecules while inhibiting the protonation toward *CHO, which was more favorable for selective CO photoreduction to CO.

View Article and Find Full Text PDF

The construction of a potential heterojunction catalyst with proper interface alignment has become a hot topic in the scientific community to effectively utilize solar energy. In this work, a one-dimensional TiO nanofiber/BiOBr S-scheme heterojunction was synthesized, and charge carrier dynamics within the interface channel were explored. In addition, we incorporated mixed phase TiO with point defects and oxygen vacancies, which greatly promoted the initial band edge shift from the UV region.

View Article and Find Full Text PDF

Novel PDI-NH/PDI-COOH Supramolecular Junction for Enhanced Visible-Light Photocatalytic Phenol Degradation.

Molecules

September 2024

Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

The development of efficient and environmentally friendly photocatalysts is crucial for addressing global energy and environmental challenges. Perylene diimide, an organic supramolecular material, holds great potential for applications in mineralized phenol. In this study, through the integration of different mass ratios of unmodified perylenimide (PDI-NH) into the self-assembly of amino acid-substituted perylenimide (PDI-COOH), a novel supramolecular organic heterojunction (PDICOOH/PDINH) was fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!