Aim: The European Union (EU) has received criticism for being slow to secure coronavirus disease (COVID-19) vaccine contracts in 2020 before the approval of the first COVID-19 vaccine. This study aimed to retrospectively analyze the EU's COVID-19 vaccine procurement strategy. To this end, the study retrospectively determined the minimum vaccine efficacy that made vaccination cost-effective from a societal perspective in Germany before clinical trial announcements in late 2020. The results were compared with the expected vaccine efficacy before the announcements.
Methods: Two strategies were analyzed: vaccination followed by the complete lifting of mitigation measures and a long-term mitigation strategy. A decision model was constructed using, for example, information on age-specific fatality rates, intensive care unit costs and outcomes, and herd protection thresholds. The base-case time horizon was 5 years. Cost-effectiveness of vaccination was determined in terms of the costs per life-year gained. The value of an additional life-year was borrowed from new, innovative oncological drugs, as cancer is a condition with a perceived threat similar to that of COVID-19.
Results: A vaccine with 50% efficacy against death due to COVID-19 was not clearly cost-effective compared with a long-term mitigation strategy if mitigation measures were planned to be lifted after vaccine rollout. The minimum vaccine efficacy required to achieve cost-effectiveness was 40% in the base case. The sensitivity analysis showed considerable variation around the minimum vaccine efficacy, extending above 50% for some of the input variables.
Conclusions: This study showed that vaccine efficacy levels expected before clinical trial announcements did not clearly justify lifting mitigation measures from a cost-effectiveness standpoint. Hence, the EU's sluggish procurement strategy still appeared to be rational at the time of decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694594 | PMC |
http://dx.doi.org/10.1186/s12913-022-08726-4 | DOI Listing |
Eur J Med Chem
January 2025
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:
Substance use disorders (SUDs) present a critical global health challenge, as current treatment options often prove insufficient, particularly for substances like ketamine and methamphetamine. In this study, we developed a novel immunotherapeutic strategy utilizing protein-free, polymer-based vaccines, with hyperbranched polyethylenimine (Hb-PEI) as a carrier to enhance immune specificity and remove the production of non-specific antibodies. Haptens for ketamine and methamphetamine were covalently conjugated to the Hb-PEI carrier, along with the Toll-like receptor (TLR) 7/8 agonist 1V209, to stimulate targeted humoral immune responses.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.
View Article and Find Full Text PDFFront Parasitol
March 2024
Disease Control Department, Moredun Research Institute, Edinburgh, United Kingdom.
Introduction: We previously demonstrated efficacy of an 8-antigen recombinant subunit vaccine against a single species homologous challenge in lambs and in lambing ewes in pen trials. We subsequently demonstrated efficacy of a simplified, 2-antigen, version of this vaccine in lambs in pen trials. Here, we test both vaccines in lambing ewes in a field setting.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.
View Article and Find Full Text PDFJ Viral Hepat
February 2025
Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Dendritic cells are the most potent antigen-presenting cells in immune therapeutic approaches for chronic hepatitis B (CHB) infection. Here, we developed a clinical trial to evaluate the efficacy and safety of autologous HBV vaccine-pulsed DCs and their induced T cells (HPDCT) in CHB patients. This was a randomised, prospective, open-label, multicentre, superiority study and 309 treatment-naive CHB patients were divided into HPDCT plus nucleos(t)ide analogues (NAs) group (n = 84), NAs mono-therapy group (n = 82), HPDCT plus Peg-interferon (Peg-IFN) group (n = 69), Peg-IFN mono-therapy group (n = 74).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!