Background: Multiple processes impact the probability of retention of individual genes following whole genome duplication (WGD) events. In analyzing two consecutive whole genome duplication events that occurred in the lineage leading to Atlantic salmon, a new phylogenetic statistical analysis was developed to examine the contingency of retention in one event based upon retention in a previous event. This analysis is intended to evaluate mechanisms of duplicate gene retention and to provide software to generate the test statistic for any genome with pairs of WGDs in its history.
Results: Here a software package written in Python, 'WGDTree' for the analysis of duplicate gene retention following whole genome duplication events is presented. Using gene tree-species tree reconciliation to label gene duplicate nodes and differentiate between WGD and SSD duplicates, the tool calculates a statistic based upon the conditional probability of a gene duplicate being retained after a second whole genome duplication dependent upon the retention status after the first event. The package also contains methods for the simulation of gene trees with WGD events. After running simulations, the accuracy of the placement of events has been determined to be high. The conditional probability statistic has been calculated for Phalaenopsis equestris on a monocot species tree with a pair of consecutive WGD events on its lineage, showing the applicability of the method.
Conclusions: A new software tool has been created for the analysis of duplicate genes in examination of retention mechanisms. The software tool has been made available on the Python package index and the source code can be found on GitHub here: https://github.com/cnickh/wgdtree .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9701042 | PMC |
http://dx.doi.org/10.1186/s12859-022-05042-w | DOI Listing |
Mob DNA
January 2025
Department of Biology, La Sierra University, Riverside, CA, USA.
Background: Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:
Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.
View Article and Find Full Text PDFBMC Genomics
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.
View Article and Find Full Text PDFNat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Hornworts, one of the three bryophyte phyla, show some of the deepest divergences in extant land plants, with some families separated by more than 300 million years. Previous hornwort genomes represented only one genus, limiting the ability to infer evolution within hornworts and their early land plant ancestors. Here we report ten new chromosome-scale genomes representing all hornwort families and most of the genera.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: The H1/H2 haplotype on 17q21.31 represent the foremost genetic factor contributing to the risk of progressive supranuclear palsy (PSP). Various structural forms of 17q21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!