Microalgae cultivation utilizes the energy of sunlight to reduce carbon dioxide (CO) for producing renewable energy feedstock. The commercial success of the biological fixation of carbon in a consistent manner depends upon the availability of a robust microalgae strain. In the present work, we report the identification of a novel marine Nannochloris sp. through multiparametric photosynthetic evaluation. Detailed photobiological analysis of this strain has revealed a smaller functional antenna, faster relaxation kinetics of non-photochemical quenching, and a high photosynthetic rate with increasing light and temperatures. Furthermore, laboratory scale growth assessment demonstrated a broad range halotolerance of 10-70 parts per thousand (PPT) and high-temperature tolerance up to 45 °C. Such traits led to the translation of biomass productivity potential from the laboratory scale (0.2-3.0 L) to the outdoor 50,000 L raceway pond scale (500-m) without any pond crashes. The current investigation revealed outdoor single-day peak areal biomass productivity of 43 g m d in summer with an annual (March 2019-February 2020) average productivity of 20 g m d in seawater. From a sustainability perspective, this is the first report of successful round-the-year (> 347 days) multi-season (summer, monsoon, and winter) outdoor cultivation of Nannochloris sp. in broad seawater salinity (1-57 PPT), wide temperature ranges (15-40 °C), and in fluctuating light conditions. Concurrently, outdoor cultivation of this strain demonstrated conducive fatty acid distribution, including increased unsaturated fatty acids in winter. This inherent characteristic might play a role in protecting photosynthesis machinery at low temperatures and in high light stress. Altogether, our marine Nannochloris sp. showed tremendous potential for commercial scale cultivation to produce biofuels, food ingredients, and a sustainable source for vegetarian protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-022-00984-x | DOI Listing |
Sci Total Environ
December 2024
CIESOL, Centro Mixto UAL-CIEMAT, E-04120 Almería, Spain; Department of Chemistry and Physics, University of Almería, Ctra. de Sacramento s/n, 04120 Almería, Spain.
This study explores the potential application of solar photochemical processes (SPPs) for simultaneous disinfection and decontamination of urban wastewater (UWW) when combined with constructed wetlands (CWs). Two SPPs based on the addition of low concentrations of hydrogen peroxide and peroxymonosulfate (PMS) were evaluated. SPPs were carried out at pilot plant scale using low-cost solar open photoreactors (Raceway Pond Reactor (RPR)) under natural sunlight.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Institute of Blue Biotechnology and Development, Málaga University, (IBYDA), 29004 Málaga, Spain.
The microalga sp. (Chlorophyceae) was cultured in a raceway pond (RWP) placed in a greenhouse. The objective of this case study was to monitor the photosynthesis performance and selected physicochemical variables (irradiance, temperature, dissolved oxygen concentration) of microalgae cultures in situ at various depths of RWP.
View Article and Find Full Text PDFWater Res
November 2024
LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, Lisbon 1649-038, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
Pig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.
View Article and Find Full Text PDFBioresour Technol
January 2025
Research Center For Sustainable Production System and Life Cycle Assessment, National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 720 Puspiptek Area, South Tangerang, Banten 15314, Indonesia. Electronic address:
Anaerobic digestate animal effluent (ADAE) contains high N and P nutrients which need to be treated. In this study, an integrated process was proposed using a microalgae consortium of Chlorella and Scenedesmus. The system was designed for 71 m/d (medium-sized) and 355 m/d (large-sized) animals of ADAE.
View Article and Find Full Text PDFWater Environ Res
October 2024
Centre for Ecology and Evolution and Microbial Model Systems, Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
Microalgal solutions to clean waste streams and produce biomass were evaluated in Nordic conditions during winter, spring, and autumn in Southeast Sweden. The study investigated nitrogen (N) removal, biomass quality, and safety by treating industrial leachate water with a polyculture of local microalgae and bacteria in open raceway ponds, supplied with industrial CO effluent. Total N (TN) removal was higher in spring (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!