Vibration analysis of a high-pressure multistage centrifugal pump.

Sci Rep

YanTai LongGang Pump Industry CO., LTD, Yantai, 264003, People's Republic of China.

Published: November 2022

High-pressure multistage centrifugal pumps have been widely used in modern industry and required low vibration and noise. In this study, modal analysis of the rotor system of a seven-stage centrifugal pump was carried out numerically by introducing fluid force to ensure that the centrifugal pump would not resonate. A vibration test bench was established to investigate the characteristics with flow rates of 0.8Q, 1.0Q and 1.2Q, and the vibration data of ten measuring points were collected. The period of the vibration at the bearing was found to be around 20 ms and the period was related to the shaft frequency (SF) and the blade passing frequency (BPF). The vibration of the pump casing was mainly determined by the SF, two times the SF, and two times the BPF. Mechanical motion is the main factor causing pump vibration, and fluid unstable motion is also an important cause.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9700676PMC
http://dx.doi.org/10.1038/s41598-022-22605-2DOI Listing

Publication Analysis

Top Keywords

centrifugal pump
12
high-pressure multistage
8
multistage centrifugal
8
vibration
7
pump
5
vibration analysis
4
analysis high-pressure
4
centrifugal
4
pump high-pressure
4
centrifugal pumps
4

Similar Publications

Extracorporeal Membrane Oxygenation (ECMO) is a modality of extracorporeal life support which allows temporary support in cases of cardiopulmonary failure and cardiogenic shock. This study presents a valveless pump that works by the Liebau effect as a possible pumping system in ECMO circuits, replacing the current roller and centrifugal pumps. For this purpose, a mock circulatory loop emulating the haemodynamic of the right part of the heart has been constructed.

View Article and Find Full Text PDF

In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.

View Article and Find Full Text PDF

Impeller radial gap is one of important parts within a blood pump, which may affect the hemodynamics and hemocompatibility. In this study, computational fluid dynamics method was performed to evaluate the impact of radial gap sizes. The volume of scalar shear stress decreased with radial gap sizes increasing.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Progress of extracorporeal centrifugal pumps for mechanical circulatory supports.

J Artif Organs

January 2025

Department of Artificial Organs, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shinmachi, Suita, Osaka, 5648565, Japan.

This review traces the evolution of centrifugal blood pumps in mechanical circulatory support (MCS) systems. Initially met with concerns over blood damage and thrombus formation, centrifugal pumps have become crucial components in ventricular assist devices (VADs) and extracorporeal membrane oxygenation (ECMO) due to their simplified drive mechanisms and adaptability. This paper outlines three generations of centrifugal pump development: first-generation pumps with sealing components, second-generation pumps utilizing pivot bearings, and third-generation pumps employing contactless bearings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!