The accuracy of pose estimation from feature-based Visual Odometry (VO) algorithms is affected by several factors such as lighting conditions and outliers in the matched features. In this paper, a generic image processing pipeline is proposed to enhance the accuracy and robustness of feature-based VO algorithms. The pipeline consists of three stages, each addressing a problem that affects the performance of VO algorithms. The first stage tackles the lighting condition problem, where a filter called Contrast Limited Adaptive Histogram Equalization (CLAHE) is applied to the images to overcome changes in lighting in the environment. The second stage uses the Suppression via Square Covering (SSC) algorithm to ensure the features are distributed properly over the images. The last stage proposes a novel outliers rejection approach called the Angle-based Outlier Rejection (AOR) algorithm to remove the outliers generated in the feature matching process. The proposed pipeline is generic and modular and can be integrated with any type of feature-based VO (monocular, RGB-D, or stereo). The efficiency of the proposed pipeline is validated using sequences from KITTI (for stereo VO) and TUM (for RGB-D VO) datasets, as well as experimental sequences using an omnidirectional mobile robot (for monocular VO). The obtained results showed the performance gained by enhancing the accuracy and robustness of the VO algorithms without compromising on the computational cost using the proposed pipeline. The results are substantially better as opposed to not using the pipeline.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695527PMC
http://dx.doi.org/10.3390/s22228967DOI Listing

Publication Analysis

Top Keywords

accuracy robustness
12
proposed pipeline
12
generic image
8
image processing
8
processing pipeline
8
enhancing accuracy
8
visual odometry
8
pipeline
7
pipeline enhancing
4
accuracy
4

Similar Publications

Background: Detecting kidney trauma on CT scans can be challenging and is sometimes overlooked. While deep learning (DL) has shown promise in medical imaging, its application to kidney injuries remains underexplored. This study aims to develop and validate a DL algorithm for detecting kidney trauma, using institutional trauma data and the Radiological Society of North America (RSNA) dataset for external validation.

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

We introduce a method for computing quantum mechanical forces through surface integrals over the stress tensor within the framework of the density functional theory. This approach avoids the inaccuracies of traditional force calculations using the Hellmann-Feynman theorem when applied to multiresolution wavelet representations of orbitals. By integrating the quantum mechanical stress tensor over surfaces that enclose individual nuclei, we achieve highly accurate forces that exhibit superior consistency with the potential energy surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!