The recent advancements in Information and Communication Technology (ICT) as well as increasing demand for vehicular safety has led to significant progressions in Autonomous Vehicle (AV) technology. Perception and Localisation are major operations that determine the success of AV development and usage. Therefore, significant research has been carried out to provide AVs with the capabilities to not only sense and understand their surroundings efficiently, but also provide detailed information of the environment in the form of 3D maps. Visual Simultaneous Localisation and Mapping (V-SLAM) has been utilised to enable a vehicle understand its surroundings, map the environment, and identify its position within the area. This paper presents a detailed review of V-SLAM techniques implemented for AV perception and localisation. An overview of SLAM techniques is presented. In addition, an in-depth review is conducted to highlight various V-SLAM schemes, their strengths, and limitations. Challenges associated with V-SLAM deployment and future research directions are also provided in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694639PMC
http://dx.doi.org/10.3390/s22228943DOI Listing

Publication Analysis

Top Keywords

visual simultaneous
8
simultaneous localisation
8
localisation mapping
8
perception localisation
8
understand surroundings
8
advances visual
4
localisation
4
mapping techniques
4
techniques autonomous
4
autonomous vehicles
4

Similar Publications

Itching tends to worsen at night in patients with itchy skin diseases, such as atopic dermatitis. Unconscious scratching during sleep can exacerbate symptoms, cause sleep disturbances, or reduce quality of life. Therefore, evaluating nocturnal scratching behaviour is important for better patient care.

View Article and Find Full Text PDF

Krait2: a versatile software for microsatellite investigation, visualization and marker development.

BMC Genomics

January 2025

Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.

Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.

View Article and Find Full Text PDF

Purpose: To evaluate the use of anogenital distance (AGD) and genital tubercle length (GTL) between 11 and 13 + 6 weeks of gestation for fetal sex determination and to assess the impact of maternal androgen levels on these measurements.

Methods: A cross-sectional study was conducted from February to June 2017 with patients undergoing first trimester Down syndrome screening. Inclusion criteria were: (1) female age 18-49, (2) gestational age between 11 and 13 + 6 weeks, (3) optimal visualization of AGD and GTL, and (4) nonsmoking status.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!