In this research, we proposed and experimentally verified a compact all-fiber sensor that can measure refractive index (RI) and temperature simultaneously. Two segments of hollow-core fiber (HCF) are connected to the two ends of the four-core fiber (FCF) as a beam splitter and a coupler, and then spliced with two sections of single-mode fibers (lead-in and lead-out SMF), respectively. The two hollow-core fibers can excite the higher-order modes of the four-core fiber and recouple the core modes and higher-order modes into the outgoing single-mode fiber, thereby forming inter-mode interference. The different response sensitivities of two interference dips to RI and temperature manifest that the proposed structure can achieve simultaneous measurement. From the experimental results, it can be seen that the maximum sensitivity of the sensor to RI and temperature is 275.30 nm/RIU and 94.4 pm/°C, respectively. When the wavelength resolution is 0.02 nm, the RI and temperature resolutions of the sensor are 7.74 × 10 RIU and 0.335 °C. The proposed dual-parameter optical sensor has the advantages of high sensitivities, good repeatability, simple fabrication, and structure. In addition, it has potential application value in multi-parameter simultaneous measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692980PMC
http://dx.doi.org/10.3390/s22228897DOI Listing

Publication Analysis

Top Keywords

simultaneous measurement
12
refractive temperature
8
four-core fiber
8
higher-order modes
8
temperature
5
fiber
5
measurement refractive
4
temperature based
4
based smf-hcf-fcf-hcf-smf
4
smf-hcf-fcf-hcf-smf fiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!