AI Article Synopsis

Article Abstract

The functionalization of materials for ultrasensitive detection of heavy metal ions (HMIs) in the environment is crucial. Herewith, we have functionalized inexpensive and environmentally friendly FeO nanoparticles with D-valine (FeO-D-Val) by a simple co-precipitation synthetic approach characterized by XRD, FE-SEM, and FTIR spectroscopy. The FeO-D-Val sensor was used for the ultrasensitive detection of Cd, Pb, and Cu in water samples. This sensor shows a very low detection limit of 11.29, 4.59, and 20.07 nM for Cd, Pb, and Cu, respectively. The detection limits are much lower than the values suggested by the world health Organization. The real water samples were also analyzed using the developed sensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695242PMC
http://dx.doi.org/10.3390/s22228895DOI Listing

Publication Analysis

Top Keywords

detection heavy
8
heavy metal
8
metal ions
8
ultrasensitive detection
8
water samples
8
detection
5
tuning surface
4
surface functionality
4
functionality feo
4
feo sensitive
4

Similar Publications

Simultaneous or separate detection of heavy metal ions Hg and Ag based on lateral flow assays.

Mikrochim Acta

January 2025

Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.

A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.

View Article and Find Full Text PDF

Tattoos are widespread in the population. Tattoo inks, which contain a variety of ingredients among them hazardous compounds such as polyaromatic hydrocarbons, heavy metals and nanoparticles and that are made for injection into the skin, are not dermatologically tested. New testing systems for evaluation of biocompatibility of tattoo inks as composite products and the tattooing process itself are needed.

View Article and Find Full Text PDF

Enhanced simultaneous voltammetric detection of lead, copper, and mercury using a MIL-101(Cr)-(COOH)@MWCNTs modified glassy carbon electrode.

Anal Chim Acta

February 2025

Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, 11566, Egypt; Department of Chemistry, Faculty of Science, Galala University, New Galala City, Suez, Egypt. Electronic address:

Background: Electrochemical methods, particularly those utilizing sensors, offer distinct advantages over classical analytical methods. They are cost-effective, compatible with mass fabrication, suitable for remote sensing, and can be designed as handheld analyzers. In this context, MIL-101(Cr)-(COOH)₂@MWCNTs was utilized for the first time as a modifier for GCE for the sensitive voltammetric detection of Pb(II), Cu(II), and Hg(II).

View Article and Find Full Text PDF

The present study introduces the idea of a novel fluorescence-based imaging technique combined with a microfluidic platform that enables a precise control of dark transient state populations of fluorescent probes flowing over a uniform, top flat supergaussian excitation field with a constant flow rate. To demonstrate the imaging capability of the proposed detection method, numerical simulations have been performed by considering laser, microscope and flow parameters of experimental setup together with photophysical model and electronic transition rates of fluorescent dyes. As an output data to be assessed, fluorescence image data is simulated numerically for bromine-free carboxyfluorescein and its brominated derivatives having different numbers of bromine atoms.

View Article and Find Full Text PDF

An Over 30-Year Analysis of Heavy Metal Deposition in Daya Bay Sediments.

Bull Environ Contam Toxicol

January 2025

College of Marine Science, South China Agricultural University, Guangzhou, 510642, China.

Sediment cores were collected from the nearshore to bay mouth region in Daya Bay, aiming to describe the historical patterns of heavy metals deposition in the sediment. During the last 40 years, the heavy metals exhibited significant different deposition behaviors in the sediment, in which As, Zn, Cr were more enriched and contributed to metals pollution in this area. Moreover, heavy metals deposition exhibited completely opposite behaviors from the nearshore to bay mouth region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!