Energy-Efficient Trajectory Planning for Smart Sensing in IoT Networks Using Quadrotor UAVs.

Sensors (Basel)

School of Intelligent Systems Engineering, Sun Yat-Sen University-Shenzhen Campus, Shenzhen 528406, China.

Published: November 2022

Quadrotor unmanned aerial vehicles (UAVs) are widely used as flexible and mobile access points and information carriers for the future Internet of Things (IoT). This work studies a quadrotor UAV-assisted IoT network, where the UAV helps to collect sensing data from a group of IoT users. Our goal is to optimize the UAV's overall energy consumption required to complete the sensing task. Firstly, we propose a more accurate and mathematically tractable model to characterize the UAV's real-time energy consumption, which accounts for the UAV's dynamics, brushless direct current (BLDC) motor dynamics and aerodynamics. Then, we can show that the UAV's circular flight based on the proposed energy-consumption model consumes less energy than that of hover flight. Therefore, a fly-circle-communicate (FCC) trajectory design algorithm, adopting Dubins curves for circular flight, is proposed and derived to save energy and increase flight duration. Employing the FCC strategy, the UAV moves to each IoT user and implements a circular flight in the sequence solved by the travelling-salesman-problem (TSP) algorithm. Finally, we evaluate the efficiency of the proposed algorithm in a mobile sensing network by comparing the proposed algorithm with the conventional hover-communicate (HC) algorithm in terms of energy consumption. Numerical results show that the FCC algorithm reduces energy consumption by 1-10% compared to the HC algorithm, and also improves the UAV's flight duration and the sensing network's service range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698383PMC
http://dx.doi.org/10.3390/s22228729DOI Listing

Publication Analysis

Top Keywords

energy consumption
16
circular flight
12
flight duration
8
proposed algorithm
8
algorithm
7
energy
6
flight
6
sensing
5
iot
5
uav's
5

Similar Publications

Background: Childhood obesity prevalence remains high, especially in racial and ethnic minority populations with low incomes. This epidemic is attributed to various dietary behaviors, including increased consumption of energy-dense foods and sugary beverages and decreased intake of fruits and vegetables. Interactive, technology-based approaches are emerging as promising tools to support health behavior changes.

View Article and Find Full Text PDF

It has been established that steady supply of energy to various sectors of the economy is critical for societal growth and development. According to recent figures, barely one-third of the whole population in Sub-Saharan Africa has access to electricity, making the region the poorest in the world in terms of access to electrical power today. This stands in stark contrast to the vast energy resources that could be utilized to provide the necessary energy.

View Article and Find Full Text PDF

Private equity renewable energy investments in India.

Heliyon

January 2025

School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.

India is anticipated to grow its total energy consumption and CO emissions by more than any other country over the next two decades. India will have to attract around $400 billion in financing to realize its 500 GW target of renewable energy by 2030. Given complex renewable energy sector risks, rapidly scaling-up risk-friendly private equity financing will be critical to achieve India's target.

View Article and Find Full Text PDF

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.

View Article and Find Full Text PDF

Femtosecond-Laser-Ablated Porous Silver Nanowire Heater with Ultralow Driven-Voltage and Ultrafast Sensitivity for Highly Efficient Crude Oil Remedy.

Nano Lett

January 2025

Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

The development of viscous-crude oil and water separation technology is important for overcoming pollution caused by oil spills. Although some separators responding to light, electric, and temperature have been proposed, their poor structural homogeneity and inferior controllability, together with weak capillary forces, hinder the rapid salvage of viscous crude oil. Herein, a Joule-heated hydrophobic porous oil/water separator is reported, which has advantages of low energy consumption (169.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!