Actin plays a vital role in maintaining the stability and rigidity of biological cells while allowing for cell motility and shape change. The semiflexible nature of actin filaments-along with the myriad actin-binding proteins (ABPs) that serve to crosslink, bundle, and stabilize filaments-are central to this multifunctionality. The effect of ABPs on the structural and mechanical properties of actin networks has been the topic of fervent investigation over the past few decades. Yet, the combined impact of filament stabilization, stiffening and crosslinking via ABPs on the mechanical response of actin networks has yet to be explored. Here, we perform optical tweezers microrheology measurements to characterize the nonlinear force response and relaxation dynamics of actin networks in the presence of varying concentrations of α-actinin, which transiently crosslinks actin filaments, and phalloidin, which stabilizes filamentous actin and increases its persistence length. We show that crosslinking and stabilization can act both synergistically and antagonistically to tune the network resistance to nonlinear straining. For example, phalloidin stabilization leads to enhanced elastic response and reduced dissipation at large strains and timescales, while the initial microscale force response is reduced compared to networks without phalloidin. Moreover, we find that stabilization switches this initial response from that of stress stiffening to softening despite the increased filament stiffness that phalloidin confers. Finally, we show that both crosslinking and stabilization are necessary to elicit these emergent features, while the effect of stabilization on networks without crosslinkers is much more subdued. We suggest that these intriguing mechanical properties arise from the competition and cooperation between filament connectivity, bundling, and rigidification, shedding light on how ABPs with distinct roles can act in concert to mediate diverse mechanical properties of the cytoskeleton and bio-inspired polymeric materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696012 | PMC |
http://dx.doi.org/10.3390/polym14224980 | DOI Listing |
Diabetic kidney disease (DKD) progression is often marked by early glomerular endothelial cell (GEC) dysfunction, including alterations in the fenestration size and number linked to impaired glomerular filtration. However, the cellular mechanisms regulating GEC fenestrations remain poorly understood due to limitations in existing models, challenges in imaging small fenestrations , and inconsistencies between and findings. This study used a logic-based protein-protein interaction network model with normalized Hill functions for dynamics to explore how glucose-mediated signaling dysregulation impacts fenestration dynamics in GECs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.
Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks.
View Article and Find Full Text PDFStructure
January 2025
Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK. Electronic address:
The core component of the actin cytoskeleton is the globular protein G-actin, which reversibly polymerizes into filaments (F-actin). Budding yeast possesses a single actin that shares 87%-89% sequence identity with vertebrate actin isoforms. Previous structural studies indicate very close overlap of main-chain backbones.
View Article and Find Full Text PDFCurr Biol
January 2025
Cytomorpholab, Laboratoire de Physiologie Cellulaire and Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, 17 avenue des Martyrs, 38054 Grenoble, France. Electronic address:
In cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources.
View Article and Find Full Text PDFPhys Biol
January 2025
Department of Biological Sciences, Tata Institute of Fundamental Research Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha road, Navy Nagar, Colaba, Mumbai-400005, INDIA, Mumbai, 400005, INDIA.
Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighbourhood rearrangements over short time and length scales. To address this, we propose the STIPS algorithm (Spatio Temporal Information on Pixel Subsets) to track these events by creating pixel subsets that link trajectories across frames.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!