In this study, the characteristics of a composite material composed of polypropylene (PP) and ultrahigh molecular weight polyethylene (UHMWPE) are investigated. The elastic properties of the PP/UHMWPE composite material composed of short UHMWPE fibers with a low aspect ratio and long UHMWPE fibers with a high aspect ratio are compared and analyzed. In addition, the elastic properties of the PP/UHMWPE composite materials are calculated via finite element analysis and the Halpin-Tsai model by changing the volume fraction of the UHMWPE fibers. The results show that when UHMWPE fibers with a low aspect ratio and volume fraction are used, the results of the modulus of elasticity based on the finite element analysis are consistent with those obtained using the Halpin-Tsai model, although the fiber volume fraction of the UHMWPE fibers increases. Meanwhile, the deviation between the results yielded by both methods increases with the aspect ratio of the fiber. In terms of the shear modulus, the Halpin-Tsai model shows a linear trend. The results from the finite element analysis differ significantly from those of the Halpin-Tsai model owing to the random orientation of the UHMWPE fibers inside the fiber. Using a contour graph constructed based on the finite element analysis results, the aspect ratio and volume fraction of the UHMWPE fibers can be inversely calculated based on the elastic properties when synthesizing a PP/UHMWPE fiber composite. In future studies, the interfacial bonding properties of UHMWPE fibers and PP should be compared and analyzed experimentally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692900PMC
http://dx.doi.org/10.3390/polym14224851DOI Listing

Publication Analysis

Top Keywords

uhmwpe fibers
32
aspect ratio
24
volume fraction
20
elastic properties
16
finite element
16
element analysis
16
halpin-tsai model
16
composite material
12
ratio volume
12
fraction uhmwpe
12

Similar Publications

Enhancing Photocatalytic CORR by Modulating the Active Sites of COF-Based Catalysts.

Small

January 2025

Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246133, P. R. China.

The catalytic conversion of CO into valuable chemicals using metalized covalent organic frameworks (COFs) as catalysts is a promising method for reducing atmospheric CO levels. Herein, a aldehyde-amine COF (TAPT-Tp) at room temperature and pressure and their metallized results is synthesized, Ni-TAPT-Tp and Ti-TAPT-Tp. The photocatalytic results indicate that the CO to CO reduction rate is 6182.

View Article and Find Full Text PDF

Single-Site Catalyst for the Synthesis of Disentangled Ultra-High-Molecular-Weight Polyethylene.

Polymers (Basel)

January 2025

Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 14 Beisanhuan Donglu, Chao Yang District, Beijing 100013, China.

Disentangled ultra-high-molecular-weight polyethylene (-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the in situ polymerization of ethylene by single-site catalysts. The effect of single-site catalysts and polymerization conditions on the molecular characteristics is discussed in detail from the perspective of mechanism and DFT calculations.

View Article and Find Full Text PDF

In Situ Polymerization and Synthesis of UHMWPE/Carbon Fiber Composites.

Polymers (Basel)

January 2025

Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146 Hamburg, Germany.

Carbon-fiber-reinforced composites of ultra-high-molecular-weight polyethylene (UHMWPE) are not easily prepared because of their high viscosity, although they can be advantageous in advanced engineering applications due to their superior mechanical properties in combination with their low specific weight and versatility. Short polyacrylonitrile-based carbon-fiber-reinforced UHMWPE composites with fiber contents of 5, 10, and 15 wt.% could easily be prepared using in situ ethylene polymerization.

View Article and Find Full Text PDF

The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).

View Article and Find Full Text PDF

The most promising material for uranium extraction from saltwater is generally acknowledged to be fibrous adsorbents. An irradiation-modified anti-biofouling ultra-high-molecular-weight polyethylene (UHMWPE--PGAO) fibrous adsorbent with a hyperbranched structure was synthesized. It exhibited adsorption capacities of 314.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!