A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitive Organic Vapor Sensors Based on Flexible Porous Conductive Composites with Multilevel Pores and Thin, Rough, Hollow-Wall Structure. | LitMetric

Sensitive Organic Vapor Sensors Based on Flexible Porous Conductive Composites with Multilevel Pores and Thin, Rough, Hollow-Wall Structure.

Polymers (Basel)

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

Published: November 2022

Advanced organic vapor sensors that simultaneously have high sensitivity, fast response, and good reproducibility are required. Herein, flexible, robust, and conductive vapor-grown carbon fibers (VGCFs)-filled polydimethylsiloxane (PDMS) porous composites (VGCFs/PDMS sponge (CPS)) with multilevel pores and thin, rough, and hollows wall were prepared based on the sacrificial template method and a simple dip-spin-coating process. The optimized material showed outstanding mechanical elasticity and durability, good electrical conductivity and hydrophobicity, as well as excellent acid and alkali tolerance. Additionally, CPS exhibited good reproducible sensing behavior, with a high sensitivity of ~1.5 × 10 s for both static and flowing organic vapor, which was not affected in cases such as 20% squeezing deformation or environment humidity distraction (20~60% RH). Interestingly, both the reproducibility and sensitivity of CPS were better than those of film-shaped VGCFs/PDMS (CP), which has a thickness of two hundred microns. Therefore, the contradiction between the reproducibility and high sensitivity was well-solved here. The above excellent performance could be ascribed to the unique porous structures and the rough, thin, hollow wall of CPS, providing various gas channels and large contact areas for organic vapor penetration and diffusion. This work paves a new way for developing advanced vapor sensors by optimizing and tailoring the pore structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697012PMC
http://dx.doi.org/10.3390/polym14224809DOI Listing

Publication Analysis

Top Keywords

organic vapor
16
vapor sensors
12
high sensitivity
12
multilevel pores
8
pores thin
8
thin rough
8
vapor
5
sensitive organic
4
sensors based
4
based flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!