The application of rechargeable lithium batteries involves all aspects of our daily life, such as new energy vehicles, computers, watches and other electronic mobile devices, so it is becoming more and more important in contemporary society. However, commercial liquid rechargeable lithium batteries have safety hazards such as leakage or explosion, all-solid-state lithium rechargeable lithium batteries will become the best alternatives. But the biggest challenge we face at present is the large solid-solid interface contact resistance between the solid electrolyte and the electrode as well as the low ionic conductivity of the solid electrolyte. Due to the large relative molecular mass, polymers usually exhibit solid or gel state with good mechanical strength. The intermolecules are connected by covalent bonds, so that the chemical and physical stability, corrosion resistance, high temperature resistance and fire resistance are good. Many researchers have found that polymers play an important role in improving the performance of all-solid-state lithium rechargeable batteries. This review mainly describes the application of polymers in the fields of electrodes, electrolytes, electrolyte-electrode contact interfaces, and electrode binders in all-solid-state lithium rechargeable batteries, and how to improve battery performance. This review mainly introduces the recent applications of polymers in solid-state lithium battery electrodes, electrolytes, electrode binders, etc., and describes the performance of emerging porous polymer materials and materials based on traditional polymers in solid-state lithium batteries. The comparative analysis shows the application advantages and disadvantages of the emerging porous polymer materials in this field which provides valuable reference information for further development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696777 | PMC |
http://dx.doi.org/10.3390/polym14224804 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institution of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.
This paper emphasizes the critical role of electrolyte selection in enhancing the electrochemical performance of nonaqueous Li-O batteries (LOBs). It provides a comprehensive overview of various electrolyte types and their effects on the electrochemical performance for LOBs, offering insights for future electrolyte screening and design. Despite recent advancements, current electrolyte systems exhibit inadequate stability, necessitating the urgent quest for an ideal nonaqueous electrolyte.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Kosygina str 4, Moscow 119991, Russia.
Growth of lithium whiskers or dendrites is the major obstacle towards safe and stable utilization of lithium metal anodes in rechargeable batteries. In this study, we look deeper into the mechanism of lithium electrodeposition. We find that before lithium whisker or dendrite nucleation occurs, lithium is deposited into the grain boundaries of the metal electrode, which we directly observed in the focused ion beam cross-sections of the lithium electrode.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Blvd. 30 build. 1, 121205, Moscow, Russia.
Terminally fluorinated ether 5FDEE shows exceptional compatibility with LiPF, enabling high-performance Li-metal batteries. Li‖NMC811 cells with a 1 M LiPF in 5FDEE : FEC (9 : 1 v/v) electrolyte demonstrate remarkable cycling stability with an average coulombic efficiency exceeding 99.9% and no capacity fading over 550 cycles at 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!