Walnuts ( sp.) are allogamous species. Seed-derived plants are not always superior to the selected parent. Clonal propagation of selected stock plants is an essential requirement for the clonal fidelity of the descendants and to maintain their genetic structure. Selection of the desired plant is realized only after reaching maturity, and characterizing and evaluating the performance of adult trees require a long time. Clonal propagation methods ensure proper transmission of characters to descendants and can be used effectively in breeding programs. The commercialization of a cultivar or rootstock depends on the success of vegetative propagation. Walnuts, like other tree species, are recalcitrant to conventional vegetative propagation methods and even non-conventional in vitro culture (micropropagation). Elucidation of factors determining the success of cloning of desired plants would contribute to understanding current limitations for most genotypes of . We outline the role of grafting and cuttings and stool layering, as well as in vitro culture on walnut multiplication. These techniques are, in practice, entirely different; nevertheless, they are affected by common factors. The incompatibility of stock-scion and the reduced ability of stem cuttings to root are the main bottlenecks for grafting and cutting, respectively. Genotype, age, and physiological status, reinvigoration or rejuvenation-treatment of donor plant, period of harvesting and processing of explants critically affect the results of methods followed. The in vitro culture technology is the most suitable for walnut cloning. This also has constraints that affect commercial propagation of most desired genotypes. We describe comprehensive results and synthesis in this review on the asexual reproduction of walnuts, providing a better comprehension of the limiting factors and the ways to overcome them, with direct implications on commercial propagation and the releasing of outstanding genotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699183PMC
http://dx.doi.org/10.3390/plants11223040DOI Listing

Publication Analysis

Top Keywords

clonal propagation
12
vitro culture
12
propagation walnuts
8
propagation methods
8
vegetative propagation
8
commercial propagation
8
propagation
6
clonal
4
walnuts
4
walnuts spp
4

Similar Publications

Engineering high-frequency apomixis with normal seed production in hybrid rice.

iScience

December 2024

Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.

Clonal reproduction through seeds, also termed apomixis, has the potential to revolutionize agriculture by allowing hybrid crops to be clonally propagated. Although apomixis has been introduced into rice through engineering in recent years, the poor fertility and low-frequency clonal reproduction of synthetic apomicts hinder the application of apomixis in crop breeding. Here, in elite hybrid rice, we generated many apomicts, which produced clonal progeny with frequencies of > 95.

View Article and Find Full Text PDF

The methylome of clonal seagrass shoots shows age-associated variation and differentiation of roots from other tissues.

Biochim Biophys Acta Gen Subj

December 2024

Algal and Microbial Biotechnology Division, Faculty of Biosciences and Aquaculture, Nord University, Universitetsalléen 11, 8026 Bodø, Norway.

Factors influencing variance of DNA methylation in vegetatively reproducing plants, both terrestrial plants and aquatic seagrasses, is just beginning to be understood. Improving our knowledge of these mechanisms will increase understanding of transgenerational epigenetics in plant clones, of the relationship between DNA methylation and seagrass development, and of the drivers of epigenetic variation, which may underly acclimation in clonally reproducing plants. Here, we sampled leaves, rhizomes and roots of three physically and spatially separated ramet sections from a clonally propagated field of the seagrass Zostera marina.

View Article and Find Full Text PDF

Why usefulness is rarely useful.

G3 (Bethesda)

December 2024

Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA.

Mate selection plays an important role in breeding programs. The Usefulness Criterion was proposed to improve mate selection, combining information on both the mean and standard deviation of the potential offspring of a cross, particularly in clonally propagated species where large family sizes are possible. Predicting the mean value of a cross is generally easier than predicting the standard deviation, especially in outbred species when the linkage of alleles is unknown and phasing is required.

View Article and Find Full Text PDF

Emergence and clonal dissemination of KPC-2- and NDM-1-coharboring in China with an IncR plasmid.

Microbiol Spectr

December 2024

Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, China.

The rise of carbapenem-resistant coharboring KPC-2 and NDM-1 poses a significant public health threat. KPC-2-NDM-1- is rarely reported in clinical settings. In this study, we report the largest cohort of eight KPC-2-NDM-1- isolated from children with urinary tract infections.

View Article and Find Full Text PDF

Genetic and physiological characteristics of edited citrus and their impact on HLB tolerance.

Front Genome Ed

December 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States.

Article Synopsis
  • Huanglongbing (HLB) disease, triggered by the bacterium Liberibacter asiaticus, poses a serious threat to citrus production with no existing cure, making the development of resistant cultivars essential.
  • Researchers focused on the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family, specifically modifying NPR1 and NPR3 genes in sweet orange trees to improve HLB resistance.
  • The genome-edited sweet orange varieties showed enhanced vigor compared to wild-type trees under greenhouse conditions, suggesting that targeted gene editing can help in developing HLB-tolerant citrus plants, although further field tests are required to confirm these results.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!