siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases.

Pharmaceutics

Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada.

Published: November 2022

RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694336PMC
http://dx.doi.org/10.3390/pharmaceutics14112520DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
8
nanoparticles lnps
8
treatment diseases
8
delivery sirna
8
sirna target
8
target site
8
sirna
7
lnps
5
sirna functionalized
4
lipid
4

Similar Publications

Research progress of mosquito-borne virus mRNA vaccines.

Mol Ther Methods Clin Dev

March 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus.

View Article and Find Full Text PDF

Atomic Insights into pH-Dependent and Water Permeation of mRNA-Lipid Nanoparticles.

Mol Pharm

January 2025

Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines.

View Article and Find Full Text PDF

Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics.

ACS Nano

January 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems.

View Article and Find Full Text PDF

Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery.

View Article and Find Full Text PDF

The rise in the popularity of lipid nanoparticle (LNP)-based formulations necessitates the need for screening tools to quickly predict their colloidal stability in the presence of common excipients. Protein chemists have employed the diffusion interaction parameter () determined using dynamic light scattering as an indicator of formulation stability, yet this approach has not been applied to particulate systems. Herein, measurements of LNPs revealed behavior dissimilar to that of proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!