A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MLN4924 Treatment Diminishes Excessive Lipid Storage in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) by Stimulating Hepatic Mitochondrial Fatty Acid Oxidation and Lipid Metabolites. | LitMetric

MLN4924 is a selective neddylation inhibitor that has shown great potential in treating several cancer and metabolic diseases, including obesity. However, it remains largely unknown whether MLN4924 has similar effect on non-alcoholic liver disease (NAFLD), which is closely associated with metabolic disorders. Here, we investigated the role of MLN4924 in NAFLD treatment and the underlying mechanism of the action using primary hepatocytes stimulated with free fatty acid, as well as high-fat diet (HFD)-induced NAFLD mouse models. We found that MLN4924 can inhibit the accumulation of lipid and reduce the expression of peroxisome proliferator-activated receptor γ (PPARγ), a key player in adipocyte differentiation and function in both in vivo and in vitro models. Moreover, we verified its important role in decreasing the synthesis and accumulation of fat in the liver, thus mitigating the development of NAFLD in the mouse model. The body weight and fat mass in MLN4924-treated animals were significantly reduced compared to the control group, while the metabolic activity, including O consumption, CO and heat production, also increased in these animals. Importantly, we demonstrated for the first time that MLN4924 can markedly boost mitochondrial fat acid oxidation (FAO) to alter liver lipid metabolism. Finally, we compared the metabolites between MLN4924-treated and untreated Huh7 cells after fatty acid induction using lipidomics methods and techniques. We found induction of several metabolites in the treated cells, including Beta-guanidinopropionic acid (b-GPA) and Fluphenazine, which was in accordance with the increase of FAO and metabolism. Together, our study provided a link between neddylation modification and energy metabolism, as well as evidence for targeting neddylation as an emerging therapeutic approach to tackle NAFLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696831PMC
http://dx.doi.org/10.3390/pharmaceutics14112460DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
liver disease
8
disease nafld
8
acid oxidation
8
nafld mouse
8
mln4924
6
nafld
6
acid
5
mln4924 treatment
4
treatment diminishes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!