The use of hybrid nanoparticles to increase heat transfer is a favorable area of research, and therefore, numerous scientists, researchers, and scholars have expressed their appreciation for and interest in this field. Determining the dynamic role of nanofluids in the cooling of microscopic electronic gadgets, such as microchips and related devices, is also one of the fundamental tasks. With such interesting and useful applications of hybrid nanofluids in mind, the main objective is to deal with the analysis of the unsteady flow towards a shrinking sheet in a water-based hybrid ferrite nanoparticle in porous media, with heat sink/source effects. Moreover, the impact of these parameters on heat and mass transfers is also reported. Numerical results are obtained using MATLAB software. Non-unique solutions are determined for a certain shrinking strength, in addition to the unsteadiness parameter. The mass transfer and friction factor increase for the first solution due to the hybrid nanoparticles, but the heat transfer rate shows the opposite effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697625 | PMC |
http://dx.doi.org/10.3390/nano12224102 | DOI Listing |
Life Sci Alliance
March 2025
https://ror.org/023rffy11 Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFVolcanic activity has been shown to affect Earth's climate in a myriad of ways. One such example is that eruptions proximate to surface ice will promote ice melting. In turn, the crustal unloading associated with melting an ice sheet affects the internal dynamics of the underlying magma plumbing system.
View Article and Find Full Text PDFSci Rep
October 2024
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Science, Beijing, China.
Artificial Neural Networks are incredibly efficient at handling complicated and nonlinear mathematical problems, making them very useful for tackling these challenges. Artificial neural networks offer a special computational architecture that is extremely valuable in disciplines like biotechnology, biological computing, and computational fluid dynamics. The present work investigates the applicability of back-propagation artificial neural networks in conjunction with the Levenberg-Marquardt algorithm for evaluating heat transmission in hybrid nanofluids.
View Article and Find Full Text PDFMikrochim Acta
September 2024
School of Public Health, Nantong University, 9 Seyuan Rd, Nantong, 226019, Jiangsu, China.
Stainless steel sheets were coated with carbon ink to obtain disposable carbon electrodes, which were used as supports for moleculary imprinted polymer (MIP) electrochemical sensors by electropolymerizing o-phenylenediamine and o-aminophenol along with indole-3-acetic acid (IAA) as the template. After optimization, the MIP biosensors could be used for sensitive and selective detection of IAA with the limit of quantification of 0.1 µM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!