The simultaneous detection of two different biomarkers for the point-of-care diagnosis of major diseases, such as Alzheimer’s disease (AD), is greatly challenging. Due to the outstanding photoluminescence (PL) properties of quantum dots (QDs), a high-quality CdSe/CdS/ZnS QD-based fluorescence resonance energy transfer (FRET) aptasensor for simultaneously monitoring the amyloid-β oligomers (AβO) and tau protein was proposed. By engineering the interior inorganic structure and inorganic−organic interface, water-soluble dual-color CdSe/CdS/ZnS QDs with a near-unity PL quantum yield (>90%) and mono-exponential PL decay dynamics were generated. The π−π stacking and hydrogen bond interaction between the aptamer-functionalized dual-color QDs and gold nanorods@polydopamine (Au NRs@PDA) nanoparticles resulted in significant fluorescence quenching of the QDs through FRET. Upon the incorporation of the AβO and tau protein, the fluorescence recovery of the QDs-DNA/Au NRs@PDA assembly was attained, providing the possibility of simultaneously assaying the two types of AD core biomarkers. The lower detection limits of 50 pM for AβO and 20 pM for the tau protein could be ascribed to the distinguishable and robust fluorescence of QDs and broad spectral absorption of Au NRs@PDA. The sensing strategy serves as a viable platform for the simultaneously monitoring of the core biomarkers for AD and other major diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697525 | PMC |
http://dx.doi.org/10.3390/nano12224031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!