Vertical stacking of two-dimensional (2D) homo- and heterostructures are intriguing research objects, as they are essential for fundamental studies and a key towards 2D device applications. It is paramount to understand the interlayer coupling in 2D materials and to find a fast yet precise characteristic signature. In this work, we report on a Raman fingerprint of interlayer coupling in 2D transition metal dichalcogenides (TMDCs). We observed that the out-of-plane B2g vibrational mode is absent when two monolayers form a vertical stack yet remain uncoupled but emerges after strong coupling. Using systematic Raman, photoluminescence (PL), and atomic force microscopy (AFM) studies of WSe2/WSe2 homo-bilayers and MoSe2/WSe2 hetero-bilayers, we conclude that the B2g vibrational mode is a distinct Raman fingerprint of interlayer coupling in 2D TMDCs. Our results propose an easy, fast, precise, and reliable measure to evaluate the interlayer coupling in 2D TMDCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9697269 | PMC |
http://dx.doi.org/10.3390/nano12223949 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!