A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sustainable Synthesis of Sulfur-Single Walled Carbon Nanohorns Composite for Long Cycle Life Lithium-Sulfur Battery. | LitMetric

Sustainable Synthesis of Sulfur-Single Walled Carbon Nanohorns Composite for Long Cycle Life Lithium-Sulfur Battery.

Nanomaterials (Basel)

Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

Published: November 2022

Lithium-sulfur batteries are considered one of the most appealing technologies for next-generation energy-storage devices. However, the main issues impeding market breakthrough are the insulating property of sulfur and the lithium-polysulfide shuttle effect, which cause premature cell failure. To face this challenge, we employed an easy and sustainable evaporation method enabling the encapsulation of elemental sulfur within carbon nanohorns as hosting material. This synthesis process resulted in a morphology capable of ameliorating the shuttle effect and improving the electrode conductivity. The electrochemical characterization of the sulfur-carbon nanohorns active material revealed a remarkable cycle life of 800 cycles with a stable capacity of 520 mA h/g for the first 400 cycles at C/4, while reaching a value around 300 mAh/g at the 750th cycle. These results suggest sulfur-carbon nanohorn active material as a potential candidate for next-generation battery technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699005PMC
http://dx.doi.org/10.3390/nano12223933DOI Listing

Publication Analysis

Top Keywords

carbon nanohorns
8
cycle life
8
active material
8
sustainable synthesis
4
synthesis sulfur-single
4
sulfur-single walled
4
walled carbon
4
nanohorns composite
4
composite long
4
long cycle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!