Designing catalyst systems based on transition metal ions and activators using the principles of green chemistry is a fundamental research goal of scientists due to the reduction of poisonous solvents, metal salts and organic ligands released into the environment. Urgent measures to reduce climate change are in line with the goals of sustainable development and the new restrictive laws ordained by the European Union. In this report, we attempted to use known oxovanadium(IV) green complex compounds with O, N and S donor ligands, i.e., [VO(TDA)phen] • 1.5 HO (TDA = thiodiacetate), (phen = 1,10-phenanthroline), oxovanadium(IV) microclusters with 2-phenylpyridine (oxovanadium(IV) cage), [VOO(dipic)(2-phepyH)] • HO (dipic = pyridine-2,6-dicarboxylate anion), (2-phepyH = 2-phenylpyridine), [VO(dipic)(dmbipy)] • 2HO (dmbipy = 4,4'-dimethoxy-2,2'-dipyridyl) and [VO(ODA)(bipy)] • 2 HO (ODA = oxydiacetate), (bipy = 2,2'-bipyridine), as precatalysts in oligomerization reactions of 3-buten-2-ol, 2-propen-1-ol, 2-chloro-2-propen-1-ol and 2,3-dibromo-2-propen-1-ol. The precatalysts, in most cases, turned out to be highly active because the catalytic activity exceeded 1000 g mmol·h. In addition, the oligomers were characterized by Fourier-transform infrared spectroscopy (FTIR), matrix-assisted laser desorption/ionization (MALDI-TOF-MS), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694032PMC
http://dx.doi.org/10.3390/molecules27228038DOI Listing

Publication Analysis

Top Keywords

donor ligands
8
series green
4
oxovanadiumiv
4
green oxovanadiumiv
4
oxovanadiumiv precatalysts
4
precatalysts donor
4
ligands sustainable
4
sustainable olefins
4
olefins oligomerization
4
oligomerization process
4

Similar Publications

A metal-organic framework with mixed electron donor and electron acceptor ligands for efficient lithium-ion storage.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.

Electron donor tetrathiafulvalene (TTF) and electron acceptor naphthalene diimide (NDI) derivatives were used to synthesize a 3D Zn-TTF/NDI-MOF. Multiple redox active sites and charge transfer endow the pristine MOF anode with excellent rate behavior and long term cycling performance (with an average specific capacity of 956 mA h g at 1 A g over 600 cycles). This study highlights the great potential of elaborately-designed MOFs for developing efficient anode materials.

View Article and Find Full Text PDF

Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics.

View Article and Find Full Text PDF

Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.

Eur J Inorg Chem

May 2024

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Lytic polysaccharide monooxygenases (LPMOs) are Cu-dependent metalloenzymes that catalyze the hydroxylation of strong C-H bonds in polysaccharides using O or HO as oxidants (monooxygenase/peroxygenase). In the absence of C-H substrate, LPMOs reduce O to HO (oxidase) and HO to HO (peroxidase) using proton/electron donors. This rich oxidative reactivity is promoted by a mononuclear Cu center in which some of the amino acid residues surrounding the metal might can accept and donate protons and/or electrons during O and HO reduction.

View Article and Find Full Text PDF

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

A homoleptic rare-earth-metal tetramethylindate.

Chem Commun (Camb)

January 2025

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.

The homoleptic complex La(InMe) is obtained from the respective aluminium congener La(AlMe) a donor-assisted tetramethylaluminate/tetramethylindate exchange protocol. Compound La(InMe) exhibits interesting thermal lability as well as distinct cluster formation like LaIn(C)(CH)(CH)(CH) and LaIn(CH)(CH) upon addition of an excess of donor or thermal treatment. The neutral potentially tridentate ligand MeTACN (1,4,7-trimethyl-1,4,7-triazacyclononane) is used to investigate donor-triggered intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!