Synthesis of Paclitaxel Derivatives for Remote Loading into Liposomes and Improved Therapeutic Effect.

Molecules

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.

Published: November 2022

A series of novel paclitaxel derivatives modified by boronic acid according to the characteristics of the interaction between RB(OH)2 and different strapping agents of intraliposomal aqueous phase were designed and synthesized, which were then used to develop remote poorly water-soluble drugs loading into liposomes. Meanwhile, we screened nineteen paclitaxel boronic acid derivatives for their cytotoxic activities against three cancer cell lines (A549, HCT-116 and 4T1) and one normal cell line (LO2), and performed liposome formulation screening of active compounds. Among all the compounds, the liposome of 4d, with excellent drug-encapsulated efficiency (>95% for drug-to-lipid ratio of 0.1 w/w), was the most stable. Furthermore, the liposomes of compound 4d (8 mg/kg, 4 times) and higher dose of compound 4d (24 mg/kg, 4 times) showed better therapeutic effect than paclitaxel (8 mg/kg, 4 times) in the 4T1 tumor model in vivo, and the rates of tumor inhibition were 74.3%, 81.9% and 58.5%, respectively. This study provided a reasonable design strategy for the insoluble drugs to improve their drug loading into liposomes and anti-tumor effect in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694711PMC
http://dx.doi.org/10.3390/molecules27227967DOI Listing

Publication Analysis

Top Keywords

loading liposomes
12
mg/kg times
12
paclitaxel derivatives
8
boronic acid
8
compound mg/kg
8
synthesis paclitaxel
4
derivatives remote
4
remote loading
4
liposomes
4
liposomes improved
4

Similar Publications

Surgical resection and postoperative adjuvant chemotherapy have enhanced the outlook for breast cancer patients. However, tumor relapse and serious side effects of chemotherapy continue to impact patients' quality of life. Designing injectable composite hydrogel made of biodegradable polymers providing sustained release of antiangiogenic and chemotherapeutic agents might play a vital role in elimination of cancer cells.

View Article and Find Full Text PDF

Double-targeted liposomes coated with matrix metallopeptidase-2-responsive polypeptide nanogel for chemotherapy and enhanced immunotherapy against cervical cancer.

Mater Today Bio

February 2025

Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China.

Immunotherapy is a cornerstone in cancer treatment, celebrated for its precision, ability to eliminate residual cancer cells, and potential to avert tumor recurrence. Nonetheless, its effectiveness is frequently undermined by the immunosuppressive milieu created by tumors. This study presents a novel nanogel-based drug delivery system, DOX-4PI@CpG@Lipo@Gel (DPCLG), engineered to respond to Matrix Metallopeptidase-2 (MMP-2)-a protease abundant in the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: Rheumatoid arthritis is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents one of the utmost promising scientific technologies of the 21st century. Nanocarriers could be the key to unlocking its potential by encapsulating Rutin in targeted drug delivery systems, potentially for targeted Rheumatoid arthritis therapy.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a tropical disease that can cause chronic lesions and leave life-long scars, leading to social stigmatization and psychological disorders. Using growth factors and immunomodulatory agents that could accelerate wound healing and reduce the scar is highly demanded. Epidermal growth factor (EGF) plays an essential role in wound healing.

View Article and Find Full Text PDF

Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis.

Acta Pharm Sin B

December 2024

Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.

The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!