A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improved Thermoelectric Properties of SrTiO via (La, Dy and N) Co-Doping: DFT Approach. | LitMetric

This work considers the enhancement of the thermoelectric figure of merit, ZT, of SrTiO (STO) semiconductors by (La, Dy and N) co-doping. We have focused on SrTiO because it is a semiconductor with a high Seebeck coefficient compared to that of metals. It is expected that SrTiO can provide a high power factor, because the capability of converting heat into electricity is proportional to the Seebeck coefficient squared. This research aims to improve the thermoelectric performance of SrTiO by replacing host atoms by La, Dy and N atoms based on a theoretical approach performed with the Vienna Ab Initio Simulation Package (VASP) code. Here, undoped SrTiO, SrLaTiO, SrDyTiO, SrTiON, SrLaDyTiO and SrLaTiON are studied to investigate the influence of La, Dy and N doping on the thermoelectric properties of the SrTiO semiconductor. The undoped and La-, Dy- and N-doped STO structures are optimized. Next, the density of states (DOS), band structures, Seebeck coefficient, electrical conductivity per relaxation time, thermal conductivity per relaxation time and figure of merit (ZT) of all the doped systems are studied. From first-principles calculations, STO exhibits a high Seebeck coefficient and high figure of merit. However, metal and nonmetal doping, i.e., (La, N) co-doping, can generate a figure of merit higher than that of undoped STO. Interestingly, La, Dy and N doping can significantly shift the Fermi level and change the DOS of SrTiO around the Fermi level, leading to very different thermoelectric properties than those of undoped SrTiO. All doped systems considered here show greater electrical conductivity per relaxation time than undoped STO. In particular, (La, N) co-doped STO exhibits the highest ZT of 0.79 at 300 K, and still a high value of 0.77 at 1000 K, as well as high electrical conductivity per relaxation time. This renders it a viable candidate for high-temperature applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693972PMC
http://dx.doi.org/10.3390/molecules27227923DOI Listing

Publication Analysis

Top Keywords

figure merit
16
seebeck coefficient
16
conductivity relaxation
16
relaxation time
16
thermoelectric properties
12
electrical conductivity
12
srtio
9
properties srtio
8
srtio semiconductor
8
high seebeck
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!