Typhimurium (. Typhimurium), a common foodborne pathogen, severely harms the public and food security. Type I fimbriae (T1F) of . Typhimurium, plays a crucial role in the pathogenic processes; it mediates the adhesion of bacteria to the mannose receptor on the host cell, assists the bacteria to invade the host cell, and triggers an inflammatory response. Cinnamaldehyde is the main ingredient in cinnamon essential oil. In this study, cinnamaldehyde was demonstrated to inhibit the expression of T1F by hemagglutination inhibition test, transmission electron microscopy, and biofilms. The mechanism of cinnamaldehyde action was studied by proteomics technology, PCR and Western blotting. The results showed that cinnamaldehyde can inhibit T1F in . typhimurium without the growth of bacteria, by regulating the level of expression and transcription of , , , and . Proteomics results showed that cinnamaldehyde downregulated the subunits and regulators of T1F. In addition, the invasion assays proved that cinnamaldehyde can indeed reduce the ability of . typhimurium to adhere to cells. The results of animal experiments showed that the colonization in the intestinal tract and the expression levels of inflammatory cytokine were significantly decreased, and the intestinal mucosal immune factors MUC1 and MUC2 were increased under cinnamaldehyde treatment. Therefore, cinnamaldehyde may be a potential drug to target T1F to treat infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699031PMC
http://dx.doi.org/10.3390/molecules27227753DOI Listing

Publication Analysis

Top Keywords

cinnamaldehyde
9
type fimbriae
8
t1f typhimurium
8
host cell
8
typhimurium
6
t1f
5
cinnamaldehyde resist
4
resist typhimurium
4
typhimurium adhesion
4
adhesion inhibiting
4

Similar Publications

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

Seasonal Variation in Chemical Composition and Antioxidant and Antibacterial Activity of Essential Oil from Leaves.

Plants (Basel)

December 2024

Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China.

has been extensively utilized in traditional medicine systems worldwide. The essential oil (EO) content and composition are influenced by various external and internal factors, such as climate and harvest season, making it vital to determine the optimal harvest period for high-quality EO production. This study is the first to evaluate the chemical profiles, as well as the antioxidant and antibacterial activities, of leaf oil across the four seasons.

View Article and Find Full Text PDF

Characterization of key flavor compounds in cinnamon bark oil extracts using principal component analysis.

Food Res Int

January 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Cinnamon is a widely used spice, known for its distinctive flavor and aromatic properties. Due to its lignified structure, the release of flavor components typically requires prolonged stewing (1-2 h). To simulate the release of flavor components during stewing, this study employed corn oil for extraction, avoiding the use of organic solvents.

View Article and Find Full Text PDF

Background: () biofilm associated infections are prevalent and persistent, posing a serious threat to human health and causing significant economic losses in animal husbandry. Nanoemulsions demonstrate significant potential in the treatment of bacterial biofilm associated infections due to their unique physical, chemical and biological properties. In this study, a novel cinnamaldehyde nanoemulsion with the ability to penetrate biofilm structures and eliminate biofilms was developed.

View Article and Find Full Text PDF

The increasing demand for sustainable alternatives to conventional antifungal agents has prompted extensive research into the antifungal properties of plant essential oils (EOs). This study investigates the use of EOs mixture (Origanum vulgare, Moringa oleifera, and Cinnamomum verum) for controlling fungal deterioration in wall paintings at the archaeological Youssef Kamal Palace in Nag Hammadi, Egypt. Fungal isolates were collected from deteriorated wall paintings and identified using phenotypic and genotypic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!