A predominant polysaccharide isolated from Ischnoderma resinosum underwent evaluation for its capacity to scavenge free radicals and its potential antioxidant properties at a cellular-oriented level. This proved that Ischnoderma resinosum polysaccharide (IRP) remarkably curtailed AAPH-induced erythrocyte hemolysis through the inhibition of the generation of ROS (p < 0.05). Rather, it caused the restoration of intracellular antioxidant enzyme (SOD, GSH-Px, and CAT) activities at an acceptable pace and the silencing of intracellular MDA formation, as well as the rescaling of LDH leakage. Furthermore, a model of oxidative stress in HepG2 cells was established by adopting 400 μM of hydrogen peroxide, which suggested that IRP manifests promising antioxidant activity. Notably, after the intervention of IRP in the H2O2-induced HepG2 cells, there was a statistical elevation in cell survivability (p < 0.05). IRP diminished the morphological alterations in the nucleus and decreased the secretion of ROS (p < 0.05), with a dose-dependent abrogation of apoptosis (p < 0.05). Consequently, IRP, which was isolated and purified, was able to scavenge free radicals and possessed favorable antioxidant activity that could dampen the occurrence of oxidative stimulation and effectively alleviate the AAPH-induced erythrocyte hemolysis and H2O2-induced oxidative damage in HepG2 cells. This provides a basis and theoretical reference for the development and utilization of IRP as a natural antioxidant, with emphasis on the exploitation of environmentally friendly and cost-effective antioxidants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695030PMC
http://dx.doi.org/10.3390/molecules27227717DOI Listing

Publication Analysis

Top Keywords

hepg2 cells
12
antioxidant properties
8
ischnoderma resinosum
8
scavenge free
8
free radicals
8
aaph-induced erythrocyte
8
erythrocyte hemolysis
8
ros 005
8
antioxidant activity
8
irp
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!